JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 24, No. 3, September 2011

REALCOMPACTIFICATION OF A PRODUCT SPACE $X \times Y$

CHANGIL KIM*

ABSTRACT. Observing that $vX \times vY$ is a Wallman realcompactification of $X \times Y$ if $v(X \times vY) = vX \times vY$, we show that $v(X \times Y) = vX \times vY$ if and only if $X \times Y$ is z-embedded in $vX \times vY$ and $vX \times vY$ is a Wallman compactification of $X \times Y$.

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and for any space X, $\beta X(vX, \text{ resp.})$ denotes the Stone-Čech compactification (the Hewitt realcompactification, resp.) of X.

Glickberg([3]) showed that for any spaces X and Y, $\beta(X \times Y) = \beta X \times \beta Y$, that is, $X \times Y$ is C^* -embedded in $\beta X \times \beta Y$ if and only if the product space $X \times Y$ is a pseudo-compact space. An important open question in the theory of Hewitt realcompactifications of spaces concerns when the equality $v(X \times Y) = vX \times vY$ (that is, $X \times Y$ is C-embedded in $vX \times vY$) is valid([4]). Comfort([1]) showed that $v(X \times Y) = vX \times vY$ if and only if $X \times Y$ is C^* -embedded in $vX \times vY$ and that if X and Y have non-measurable cardinal and $X \times Y$ is C^* -embedded in $X \times \beta Y$, then $v(X \times Y) = vX \times vY$. Moreover, Mcarthur([6]) showed that $X \times Y$ is C^* -embedded in $X \times \beta Y$ if and only if the first projection $\pi_X : X \times Y \longrightarrow X$ is a z-closed map and that if $\pi_X : X \times Y \longrightarrow X$ is a z-closed map, then X is a P-space or Y is a pseudo-compact space.

In this paper, we first show that $\pi_X : X \times Y \longrightarrow X$ is a z-closed map if and only if $X \times Y$ is z-embedded in $X \times vY$ and $X \times vY$ is C^{*}-embedded

Received July 28, 2011; Accepted August 25, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 54D35, 54C10; Secondary 54C45, 54D60.

Key words and phrases: C^* -embedded, C-embedded, compactification, realcompactification, z-closed map.

The present research was conducted by the research fund of Dankook University in 2010.

in $X \times \beta Y$ and that for spaces X and Y with non-measurable cardinal and $v(X \times vY) = vX \times vY$, $vX \times vY$ is a Wallman realcompactification of $X \times Y$ associated with $Z(vX \times vY)_{X \times Y}$. In particular, we show that if X is a P-space and Y is a weakly Lindelöff space, then $v(X \times vY) =$ $vX \times vY$. Using these, we will show that the following are equivalent :

(1) $v(X \times Y) = vX \times vY$,

(2) $X \times Y$ is z-embedded in $X \times vY$ and $v(X \times vY) = vX \times vY$,

(3) $X \times Y$ is z-embedded in $vX \times vY$ and $v(X \times vY) = vX \times vY$, and

(4) $X \times Y$ is z-embedded in $vX \times vY$ and $vX \times vY$ is a Wallman realcompactification of $X \times Y$.

For the terminology, we refer to [2, 7].

2. *z*-closed maps

A subset A of a space X is called a zero-set in X if there is a realvalued continuous function f on X such that $A = f^{-1}(0)$. A countable intersection of zero-sets in a space X is a zero-set in X and a finite union of zero-sets in X is a zero-set in X.

DEFINITION 2.1. Let X and Y be spaces. Then the first projection $\pi_X : X \times Y \longrightarrow X$ is called *a z-closed map* if for any zero-set A in $X \times Y$, $\pi_X(A)$ is a closed set in X.

A space X is called a *P*-space if every G_{δ} -set in X, that is, a countable intersection of open sets in X is open in X. Clearly, a space X is a *P*-space if and only if every zero-set in X is open in X.

PROPOSITION 2.2.

(1) Let X be a P-space and Y a Lindelöff space. Then $\pi_X : X \times Y \longrightarrow X$ is a z-closed map.

(2) Let X be a space and Y a compact space. Then $\pi_X : X \times Y \longrightarrow X$ is a z-closed map.

Proof. (1) Let A be a zero-set in $X \times Y$. Suppose that there is an x in $X - \pi_X(A)$. Then $(\{x\} \times Y) \cap A = \emptyset$. For each $y \in Y$, there are zero-sets E_y and F_y in X and Y, resp. such that $x \in int_X(E_y)$, $y \in int_Y(F_y)$ and $(E_y \times F_y) \cap A = \emptyset$. Since Y is a Lindelöff space, there is a sequence (y_n) in Y such that $\cup \{F_{y_n} \mid n \in N\} = Y$. Let $Z = \cap \{E_{y_n} \mid n \in N\}$. Then $(Z \times Y) \cap A = \emptyset$ and $Z \cap \pi_X(A) = \emptyset$. Since X is a P-space and Z is a zero-set in X, Z is an open neighborhood of x in X and hence

 $x \notin cl_X(\pi_X(A))$. Since $cl_X(\pi_X(A)) \subseteq \pi_X(A)$, $\pi_X(A)$ is closed in X. Hence π_X is a z-closed map.

Similarly, we have (2).

611

A pair (Y, j) or simply Y is called a compactification(realcompactification, resp.) of a space X if Y is a compact space (a realcompact space, resp.) and $j: X \longrightarrow Y$ is a dense embedding. The ring of real-valued continuous functions on a space X is denoted by C(X) and $C^*(X)$ denotes the subring of bounded functions of C(X). A subspace S of a space X is called C-embedded(C^{*}-embedded, resp.) in X if every function in $C(S)(C^*(S), \text{resp.})$ extends to a function in $C(X)(C^*(X), \text{resp.})$. Every space X has the unique compactification βX (realcompactification vX, resp.) in which X is densely C^{*}-embedded(C-embedded, resp.)([2]).

LEMMA 2.3. Let X and Y be spaces and $x \in X$. Then

(1) $\{x\} \times Y$ is C-embedded in $X \times vY$, and

(2) $\{x\} \times Y$ is C^* -embedded in $X \times \beta Y$.

Proof. (1) Let $f \in C(\{x\} \times Y)$. The map $h : Y \longrightarrow \{x\} \times Y$, defined by h(y) = (x, y), is a homeomorphism. Since $f \circ h : Y \longrightarrow R$ is a continuous map, there is a continuous map $g : vY \longrightarrow R$ such that $g \mid_Y = f \circ h$. Then the map $k : X \times vY \longrightarrow R$, defined by k(a, y) = g(y), is a continuous map and for any $y \in Y$, k(x, y) = g(y) = f(h(y)) = f(x, y). Hence $k \mid_{X \times Y} = f$ and k is the extension of f to $X \times vY$.

Similarly, we have (2).

LEMMA 2.4. ([6]) Let X and Y be spaces. Then $X \times Y$ is C^* -embedded in $X \times \beta Y$ if and only if $\pi_X : X \times Y \longrightarrow X$ is z-closed.

A subspace S in a space X is called z-embedded in X if for any zero-set Z in S, there is a zero-set A in X such that $Z = A \cap S$.

Recall that a C^* -embedded subspace S of a space X is C-embedded in X if and only if for any zero-set Z in X such that $S \cap Z = \emptyset$, S and Zare completely separated in X, that is, there is a real-valued continuous map f on X such that $S \subseteq f^{-1}(0)$ and $Z \subseteq f^{-1}(1)([2])$.

PROPOSITION 2.5. Let X and Y be spaces. Then $\pi_X : X \times Y \longrightarrow X$ is a z-closed map if and only if $X \times Y$ is z-embedded in $X \times vY$ and $X \times vY$ is C^{*}-embedded in $X \times \beta Y$.

Proof. Suppose that $X \times Y$ is z-embedded in $X \times vY$ and $X \times vY$ is C^* -embedded in $X \times \beta Y$. Let A be a zero-set in $X \times Y$ and $x \in X - \pi_X(A)$. Then $\pi_X^{-1}(x) \cap A = \emptyset$. Since $X \times Y$ is z-embedded in $X \times vY$, there is a zero-set B in $X \times vY$ such that $A = B \cap (X \times Y)$. Then

 $(\{x\} \times Y) \cap B = \emptyset$. By Lemma 2.3, $\{x\} \times Y$ is *C*-embedded in $X \times vY$ and hence there are disjoint zero-set *C*, *D* in $X \times vY$ such that $\{x\} \times Y \subseteq C$ and $B \subseteq D$. Since $X \times vY$ is *C*^{*}-embedded in $X \times \beta Y$, by Urysohn's extension theorem, $cl_{X \times \beta Y}(C) \cap cl_{X \times \beta Y}(D) = \emptyset$. Since $\{x\} \times \beta Y \subseteq$ $cl_{X \times \beta Y}(C)$ and $cl_{X \times \beta Y}(B) \subseteq cl_{X \times \beta Y}(D)$, $(\{x\} \times \beta Y) \cap cl_{X \times \beta Y}(B) = \emptyset$. Since βY is a compact space, there is a open neighborhood *U* of *x* in *X* such that $(U \times \beta Y) \cap cl_{X \times \beta Y}(B) = \emptyset$ and hence $(U \times Y) \cap A = \emptyset$. Since $U \cap \pi_X(A) = \emptyset$, $x \notin cl_X(\pi_X(A))$ and thus $\pi : X \times Y \longrightarrow X$ is a *z*-closed map.

The converse is trivial.

Note that $\pi_X : X \times vY \longrightarrow X$ is a z-closed map if and only if $X \times vY$ is C^* -embedded in $X \times \beta Y$. Hence we have the following :

COROLLARY 2.6. Let X and Y be spaces. Then $\pi_X : X \times Y \longrightarrow X$ is a z-closed map if and only if $X \times Y$ is z-embedded in $X \times vY$ and $\pi_X : X \times vY \longrightarrow X$ is a z-closed map.

3. Realcompactification of a product space $X \times Y$

The equality $v(X \times Y) = vX \times vY$ is to be interpreted to mean that $X \times Y$ is *C*-embedded in $vX \times vY$. For spaces *X* and *Y*, $v(X \times Y) = vX \times vY$ if and only if $X \times Y$ is *C*^{*}-embedded in $vX \times vY([1])$. Let *X* and *Y* be spaces with non-measurable cardinal. If $X \times Y$ is *C*^{*}-embedded in $X \times \beta Y$, then $v(X \times Y) = vX \times vY([6])$. A space *X* is called *a* pseudo-compact space if $C(X) = C^*(X)$, equivalently, $vX = \beta X$. If $\pi_X : X \times Y \longrightarrow X$ is a z-closed map, then *X* is a *P*-space or *Y* is a pseudo-compact space([6]).

By Proposition 2.2, we have the following proposition:

PROPOSITION 3.1. Let X and Y be spaces with non-measurable cardinal. Suppose that Y is a pseudo-compact space. Then $v(X \times vY) = vX \times vY$.

A space X is called a weakly Lindelöff space if for any open cover \mathcal{U} of X, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $\cup \{V \mid V \in \mathcal{V}\}$ is dense in X. A space with a dense weakly Lindelöff subspace is also a weakly Lindelöff space.

PROPOSITION 3.2. Let X and Y be spaces with non-measurable cardinal. Suppose that Y has a dense weakly Lindelöff subspace. Then $v(X \times vY) = vX \times vY$.

Proof. We will show that $\pi_X : X \times vY \longrightarrow X$ is a z-closed map. Take any zero-set Z in $X \times vY$ and $x \in X - \pi_X(A)$. Then $(\{x\} \times vY) \cap Z = \emptyset$. Hence $(\{x\} \times Y) \cap Z = \emptyset$ and by Lemma 2.3, there are disjoint zerosets A and B in $X \times vY$ such that $\{x\} \times vY \subseteq int_{X \times vY}(A)$ and $Z \subseteq int_{X \times vY}(B)$. For any $y \in vY$, there is a zero-sets neighborhood $E_y(F_y,$ resp.) of x(y, resp.) in X(vY, resp.) such that $E_y \times F_y \subseteq int_{X \times vY}(A)$. Since vY is a weakly Lindelöff space, there is a sequence (y_n) in vYsuch that $\cup \{F_{y_n} \mid n \in N\}$ is dense in vY. Let $G = \cap \{E_{y_n} \mid n \in N\}$ and $H = \cup \{F_{y_n} \mid n \in N\}$. Since $(G \times H) \cap int_{X \times vY}(B) = \emptyset$, $cl_{X \times vY}(G \times H) \cap int_{X \times vY}(B) = (cl_X(G) \times cl_{vY}(H)) \cap int_{X \times vY}(B) = (G \times vY) \cap int_{X \times vY}(B) = \emptyset$. Hence $G \cap \pi_X(Z) = \emptyset$. Since X is a P-space and G is a zero-set in $X, x \notin cl_X(\pi_X(Z))$. So $\pi_X : X \times vY \longrightarrow X$ is a z-closed map and thus $v(X \times vY) = vX \times vY$.

Let X be a space and A a zero-set in X. Then $cl_{vX}(A)$ is also a zeroset in vX. Hence for any non-empty zero-set Z in vX, $Z \cap X \neq \emptyset([7])$.

THEOREM 3.3. Let X and Y be spaces with non-measurable cardinal. Suppose that $v(X \times vY) = vX \times vY$. For any non-empty zero-set Z in $vX \times vY$, $Z \cap (X \times Y) \neq \emptyset$.

Proof. Let Z be a non-empty zero-set in $vX \times vY$. Since $v(X \times vY) = vX \times vY$, $Z \cap (X \times vY) \neq \emptyset$. Pick $(x, y) \in Z \cap (X \times vY)$. Suppose that $Z \cap (X \times Y) = \emptyset$. Then $(\{x\} \times Y) \cap (Z \cap (X \times vY)) = \emptyset$. Since $\{x\} \times Y$ is C-embedded in $X \times vY$ and $Z \cap (X \times vY)$ is a zero-set in $X \times vY$, $\{x\} \times Y$ and $Z \cap (X \times vY)$ are completely separated in $X \times vY([2])$. Hence $(\{x\} \times vY) \cap (Z \cap (X \times vY)) = \emptyset$. Since $(x, y) \in (\{x\} \times vY) \cap (Z \cap (X \times vY)) = \emptyset$. Since $(x, y) \in (\{x\} \times vY) \cap (Z \cap (X \times vY))$, this is a contradiction. Thus $(X \times Y) \cap Z \neq \emptyset$.

DEFINITION 3.4. ([8]) Let X be a space and \mathcal{F} a family of closed sets in X. Then \mathcal{F} is called a separating nest generated intersection ring on X if

(1) for each closed set H in X and $x \in X - H$, there are A, B in \mathcal{F} such that $x \in A, H \subseteq B$ and $A \cap B = \emptyset$,

(2) it is closed under finite unions and countable intersections, and

(3) for any $F \in \mathcal{F}$, there are sequences $(F_n), (G_n)$ in \mathcal{F} such that $F = \bigcap \{F_n \mid n \in N\}$ and for any $n \in N, X - H_{n+1} \subseteq F_{n+1} \subseteq X - H_n \subseteq F_n$.

For any space X, let Z(X) denotes the set of zero-sets in X. Then Z(X) is a separating nest generated intersection ring on X.

Let X be space, \mathcal{F} a separating nest generated intersection ring on X and $(\omega(X, \mathcal{F}), \omega_X)$ the Wallman compactification of X associated with

 $\mathcal{F}([8])$. Let $v(X, \mathcal{F}) = \{ \alpha \mid \alpha \text{ is an } \mathcal{F}\text{-ultrafilter with the countable inter$ $section property} \}$ be the subspace of $\omega(X, \mathcal{F})$ and $v_X : X \longrightarrow v(X, \mathcal{F})$ the corestriction of $\omega_X : X \longrightarrow \omega(X, \mathcal{F})$ with respect to $v(X, \mathcal{F})$. Then $(v(X, \mathcal{F}), v_X)$ is a realcompactification of X (called the Wallman realcompctification of X associated with \mathcal{F})([8]).

For any $\mathcal{F} \subseteq P(X)$ and $A \subseteq X$, let $\mathcal{F}_A = \{F \cap A \mid F \in \mathcal{F}\}$. For a separating nest generated intersection ring \mathcal{F} on X and $A \subseteq X$, \mathcal{F}_A is a separating nest generated intersection ring on A.

LEMMA 3.5. ([5]) A real compactification Y of a space X is a Wallman real compactification of X if and only if for any non-empty zero-set Z in Y, $Z \cap X \neq \emptyset$. In case, $Y = v(Y, Z(Y)_X)$.

By Proposition 2.2 and Proposition 3.2, we have the following corollary.

COROLLARY 3.6. Let X and Y be spaces with non-measurable cardinal.

(1) If Y is a pseudo-compact space, then $vX \times vY$ is a Wallman realcompactification of X associated with $Z(vX \times vY)_{X \times Y}$.

(2) If X is a P-space and Y has a dense weakly Lindelöff subspace, then $vX \times vY$ is a Wallman realcompactification of X associated with $Z(vX \times vY)_{X \times Y}$.

Note that for any space X, vX = v(X, Z(X))([2]). Using this, we have the following :

THEOREM 3.7. Let X and Y be spaces with non-measurable cardinal. Then the following are equivalent :

(1) $v(X \times Y) = vX \times vY$,

(2) $X \times Y$ is z-embedded in $X \times vY$ and $v(X \times vY) = vX \times vY$,

(3) X × Y is z-embedded in vX × vY and v(X × vY) = vX × vY, and
(4) X × Y is z-embedded in vX × vY and vX × vY is a Wallman real-compactification of X × Y.

Proof. (1) \Rightarrow (2) Since $v(X \times Y) = vX \times vY$, $X \times Y$ is *C*-embedded in $vX \times vY$ and $X \times vY$ is *C*-embedded in $vX \times vY$, because $X \times Y \subseteq$ $X \times vY \subseteq vX \times vY$. Hence $v(X \times vY) = vX \times vY$. Since $X \times Y$ is *C*-embedded in $vX \times vY$, $X \times Y$ is *z*-embedded in $vX \times vY$ and clearly, $X \times Y$ is *z*-embedded in $X \times vY$.

 $(2) \Rightarrow (3)$ Since $v(X \times vY) = vX \times vY$, $Z(X \times vY) = Z(vX \times vY)_{X \times vY}$ and since $X \times Y$ is z-embedded in $X \times vY$, $Z(X \times Y) = Z(X \times vY)_{X \times Y}$. Hence $Z(X \times Y) = Z(X \times vY)_{X \times Y} = (Z(vX \times vY)_{X \times Y})$

 $vY)_{X \times vY})_{X \times Y} = Z(vX \times vY)_{X \times Y}$ and hence $X \times Y$ is z-embedded in $vX \times vY$

(3) \Rightarrow (4) Since $v(X \times vY) = vX \times vY$, $vX \times vY$ is a Wallman realcompactification of $X \times Y$, by Theorem 3.3.

 $(4) \Rightarrow (1) \text{ Since } vX \times vY \text{ is a Wallman realcompactification of } X \times Y,$ $vX \times vY = v(X \times Y, Z(vX \times vY)_{X \times Y}). \text{ Since } X \times Y \text{ is } z\text{-embedded} \\ \text{ in } vX \times vY, Z(X \times Y) = Z(vX \times vY)_{X \times Y}. \text{ Hence } vX \times vY = v(X \times Y, Z(X \times Y)) = v(X \times Y)$

Every C^* -embedded subspace S of a space X is z-embedded in X. Hence we have the following corollary :

COROLLARY 3.8. Let X and Y be spaces with non-measurable cardinal. Suppose that $v(X \times vY) = vX \times vY$. Then the following are equivalent :

(1) $X \times Y$ is z-embedded in $X \times \beta Y$,

(2) $X \times Y$ is z-embedded in $X \times vY$,

(3) $v(X \times Y) = vX \times vY$, and

(4) $X \times Y$ is C^* -embedded in $X \times \beta Y$.

Let X and Y be spaces with non-measurable cardinal. Then $v(X \times vY) = vX \times vY$ if Y is a pseudo-compact space. Hence we have the following :

COROLLARY 3.9. Let X and Y be spaces with non-measurable cardinal. Suppose that X is not a P-space. Then the following are equivalent .

(1) $v(X \times Y) = vX \times vY$,

(2) Y is a psuedo-compact space and $X \times Y$ is z-embedded in $X \times vY$, and

(3) Y is a psuedo-compact space and $X \times Y$ is z-embedded in $vX \times vY$.

By Proposition 3.2, we have the following :

COROLLARY 3.10. Let X and Y be spaces with non-measurable cardinal. Suppose that Y is not a pseudo-compact space with a dense weakly Lindelöff space. Then the following are equivalent :

(1) $v(X \times Y) = vX \times vY$,

(2) X is a P-space and $X \times Y$ is z-embedded in $X \times vY$, and

(3) X is a P-space and $X \times Y$ is z-embedded in $vX \times vY$.

A space X is called a P'-space if every zero-set in X is a regular closed set in X.

COROLLARY 3.11. Let X and Y be spaces with non-measurable cardinal. If $X \times Y$ is a P'-space, then $X \times Y$ is z-embedded in $X \times vY$ if and only if $v(X \times Y) = vX \times vY$.

Let X and Y be spaces such that $\beta(X \times Y) = \beta X \times \beta Y$. Then $X \times Y$ is a pseudo-compact space([3]) and Y is also a pseudo-compact space. Hence we have the following :

COROLLARY 3.12. Let X and Y be spaces with non-measurable cardinal. If $\beta(X \times Y) = \beta X \times \beta Y$, then $\upsilon(X \times Y) = \upsilon X \times \upsilon Y$.

References

- W. W. Comfort, On Hewitt realcompactification of a product space, Trans. Amer. Math. Soc. 181 (1968), 107-118.
- [2] L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, Princeton, New York, 1960.
- [3] I. Glicksberg, Stone-Čech compactification of product space, Trans. Amer. Math. Soc. 90 (1959), 369-382.
- [4] H. Herrlich and M. Hušek, Some open categorical problems in TOP, Applied Categorical Structure 1 (1993), 1-19.
- [5] C. I. Kim and Kap Hun Jung, *Hewitt realcompactifications of minimal quasi-F covers*, Kangweon-Kungki Math. Jour. 10 (2002), 45-51.
- [6] W. G. Mcarthur, Hewitt realcompactifications of product spaces, Canadian J. Math. 22 (1970), no. 3, 645-656.
- [7] J. Porter and R. G. Woods, *Extensions and Absolutes of Hausdorff Spaces*, Springer, Berlin, 1988.
- [8] A. K. Steiner and E. F. Steiner, Nested generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1970), 779-804.

Department of Mathematics Education Dankook University Yongin-si, Gyeonggi-do 448-701, Republic of Korea *E-mail*: kci206@hanmail.net

^{*}