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REALCOMPACTIFICATION OF A PRODUCT SPACE
X xY

CaANGIL Kim*

ABSTRACT. Observing that vX x vY is a Wallman realcompactifi-
cation of X XY if v(X xvY) = vX xvY, we show that v(X xY) =
vX xvY if and only if X XY is z-embedded in v X xvY and vX xvY
is a Wallman compactification of X x Y.

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and for
any space X, BX(vX, resp.) denotes the Stone-Cech compactification
(the Hewitt realcompactification, resp.) of X .

Glickberg([3]) showed that for any spaces X and Y, (X xY) =
BX x BY, that is, X x Y is C*-embedded in X x BY if and only if the
product space X X Y is a pseudo-compact space. An important open
question in the theory of Hewitt realcompactifications of spaces concerns
when the equality v(X xY) = v X xvY (that is, X xY is C-embedded in
vX xvY') is valid([4]). Comfort([1]) showed that v(X xY) = vX xvY if
and only if X xY is C*-embedded in v X x vY and that if X and Y have
non-measurable cardinal and X x Y is C*-embedded in X x BY, then
v(X xY) =vX xvY. Moreover, Mcarthur([6]) showed that X xY is C*-
embedded in X x GY if and only if the first projection 7y : X XY — X
is a z-closed map and that if 7x : X x Y — X is a z-closed map, then
X is a P-space or Y is a pseudo-compact space.

In this paper, we first show that 7x : X XY — X is a z-closed map if
and only if X XY is z-embedded in X x vY and X xvY is C*-embedded
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in X x fY and that for spaces X and Y with non-measurable cardinal
and v(X xvY) = vX xvY, vX xvY is a Wallman realcompactification
of X xY associated with Z(vX x vY)xxy. In particular, we show that
if X is a P-space and Y is a weakly Lindeloff space, then v(X x vY) =
vX x vY. Using these, we will show that the following are equivalent :

(1) v(X xY)=vX xvY,

(2) X x Y is z-embedded in X x vY and v(X x vY) =vX xvY,

(3) X xY is z-embedded in vX x vY and v(X x vY) = vX xvY,
and

(4) X xY is z-embedded in vX x vY and vX x vY is a Wallman
realcompactification of X x Y.

For the terminology, we refer to [2, 7].

2. z-closed maps

A subset A of a space X is called a zero-set in X if there is a real-
valued continuous function f on X such that A = f=1(0). A countable
intersection of zero-sets in a space X is a zero-set in X and a finite union
of zero-sets in X is a zero-set in X.

DEFINITION 2.1. Let X and Y be spaces. Then the first projection
mx : X XY — X is called a z-closed map if for any zero-set Ain X XY,
mx(A) is a closed set in X.

A space X is called a P-space if every Gs-set in X, that is, a countable
intersection of open sets in X is open in X. Clearly, a space X is a P-
space if and only if every zero-set in X is open in X.

PRrROPOSITION 2.2.
(1) Let X be a P-space andY a Lindeloff space. Thenmx : X XY — X
is a z-closed map.
(2) Let X be a space and Y a compact space. Then tx : X xY — X
is a z-closed map.

Proof. (1) Let A be a zero-set in X x Y. Suppose that there is an x in
X —7x(A). Then ({z} xY)NA = (. For each y € Y, there are zero-sets
E, and F, in X and Y, resp. such that x € intx(Ey), y € inty(Fy)
and (Ey x F)) N A = (. Since Y is a Lindel6ff space, there is a sequence
(yn) in Y such that U{F,, |n € N} =Y. Let Z =n{E,, | n € N}
Then (Z xY)NA=0and ZNnx(A) = 0. Since X is a P-space and
Z is a zero-set in X, Z is an open neighborhood of z in X and hence
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x ¢ clx(mx(A)). Since clx(mx(A)) C wx(A), mx(A) is closed in X.
Hence 7x is a z-closed map.
Similarly, we have (2). O

A pair (Y, 7) or simply Y is called a compactification(realcompactification,
resp.) of a space X if Y is a compact space(a realcompact space, resp.)
and j : X — Y is a dense embedding. The ring of real-valued contin-
uous functions on a space X is denoted by C'(X) and C*(X) denotes
the subring of bounded functions of C'(X). A subspace S of a space
X is called C-embedded(C*-embedded, resp.) in X if every function in
C(S)(C*(S), resp.) extends to a function in C(X)(C*(X), resp.). Every
space X has the unique compactification 3X (realcompactification v.X,
resp.) in which X is densely C*-embedded(C-embedded, resp.)([2]).

LEMMA 2.3. Let X and Y be spaces and x € X. Then
(1) {z} x Y is C-embedded in X x vY, and
(2) {z} xY is C*-embedded in X x BY.

Proof. (1) Let f € C({z} xY). The map h : ¥ — {2z} xY,
defined by h(y) = (z,y), is a homeomorphism. Since foh :Y — R
is a continuous map, there is a continuous map ¢ : vY¥ — R such that
g |y= foh. Then the map k : X xvY — R, defined by k(a,y) = g(y), is
a continuous map and for any y € Y, k(z,y) = g(y) = f(h(y)) = f(x,y).
Hence k |xxy= f and k is the extension of f to X x vY.

Similarly, we have (2). O

LEMMA 2.4. ([6]) Let X and Y be spaces. Then X x Y is C*-
embedded in X x BY if and only if rx : X x Y — X is z-closed.

A subspace S in a space X is called z-embedded in X if for any zero-set
Z in S, there is a zero-set A in X such that Z = AN S.

Recall that a C*-embedded subspace S of a space X is C-embedded
in X if and only if for any zero-set Z in X such that SNZ = (), S and Z
are completely separated in X, that is, there is a real-valued continuous
map f on X such that S C f~1(0) and Z C f~1(1)([2]).

ProproOSITION 2.5. Let X and Y be spaces. Thentx : X XY — X

is a z-closed map if and only if X X Y is z-embedded in X x vY and
X xvY is C*-embedded in X x BY.

Proof. Suppose that X x Y is z-embedded in X x vY and X x vY
is C*-embedded in X x Y. Let A be a zero-set in X x Y and z €
X — 7x(A). Then 7' () N A = . Since X x Y is z-embedded in
X xvY, there is a zero-set B in X xvY such that A = BN(X xY’). Then
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({z}xY)NB = (. By Lemma 2.3, {z} XY is C-embedded in X xvY and
hence there are disjoint zero-set C, D in X x vY such that {z} xY C C
and B C D. Since X x vY is C"-embedded in X x BY, by Urysohn’s
extension theorem, clx gy (C) N clxxpy (D) = 0. Since {z} x BY C
CZXXﬁy(C) and ClXng(B) - ClXxgy<D), ({z} x gY) ﬂClXxgy(B) = 0.
Since BY is a compact space, there is a open neighborhood U of z in X
such that (U x 8Y) Nelxxpy (B) = 0 and hence (U xY)N A = (). Since
UNnx(A) =0,z ¢ clx(nx(A)) and thus 7 : X XY — X is a z-closed
map.

The converse is trivial. O

Note that mx : X xvY — X is a z-closed map if and only if X xvY
is C*-embedded in X x #Y. Hence we have the following :

COROLLARY 2.6. Let X and Y be spaces. Then tx : X XY — X
is a z-closed map if and only if X XY is z-embedded in X x vY and
mx : X x vY — X is a z-closed map.

3. Realcompactification of a product space X x Y

The equality v(X X Y) = vX xvY is to be interpreted to mean that
X xY is C-embedded in vX x vY. For spaces X and YV, v(X xY) =
vX xvY if and only if X xY is C*-embedded in vX xvY ([1]). Let X and
Y be spaces with non-measurable cardinal. If X x Y is C*-embedded
in X x BY, then v(X xY) = vX x vY([6]). A space X is called a
pseudo-compact space if C(X) = C*(X), equivalently, vX = pX. If
mx : X XY — X is a z-closed map, then X is a P-space or Y is a
pseudo-compact space([6]).

By Proposition 2.2, we have the following proposition:

ProrosITION 3.1. Let X and Y be spaces with non-measurable car-
dinal. Suppose that Y is a pseudo-compact space. Then v(X x vY) =
vX X vY.

A space X is called a weakly Lindeldff space if for any open cover U
of X, there is a countable subfamily V of U such that U{V | V € V} is
dense in X. A space with a dense weakly Lindel6ff subspace is also a
weakly Lindeloff space.

ProproSITION 3.2. Let X and Y be spaces with non-measurable car-
dinal. Suppose that Y has a dense weakly Lindel6ff subspace. Then
v(X xvY) =vX xvY.
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Proof. We will show that 7x : X xvY — X is a z-closed map. Take
any zero-set Z in X xvY and # € X —mx(A). Then ({z} xvY)NZ = 0.
Hence ({z} x V)N Z = 0 and by Lemma 2.3, there are disjoint zero-
sets A and B in X x vY such that {z} x vY C intxx,yv(4) and Z C
intxx,y(B). For any y € vY, there is a zero-sets neighborhood E,(Fy,
resp.) of z(y, resp.) in X (vY, resp.) such that E; x F,, C intxx,y(A).
Since vY is a weakly Lindeloff space, there is a sequence (y,) in vY
such that U{F,, | n € N} is dense in vY. Let G = N{Ey, | n €
N} and H = U{F,, | n € N}. Since (G x H) Nintxxuy(B) = 0,
CZXXUy(G X H) N ’intXXUy(B) = (Cl)((G) X Clvy(H)) N intXXUy(B) =
(GxvY)Nintxxyy (B) = 0. Hence GNx(Z) = (). Since X is a P-space
and G is a zero-set in X, z ¢ clx(mx(Z)). Sonx : X xvY — X is a
z-closed map and thus v(X x vY) =vX x vY. O

Let X be a space and A a zero-set in X. Then cl, x (A) is also a zero-
set in vX. Hence for any non-empty zero-set Z in vX, Z N X # O([7]).

THEOREM 3.3. Let X and Y be spaces with non-measurable cardinal.
Suppose that v(X x vY) = vX x vY. For any non-empty zero-set Z in
vX xvY, ZN (X xY) #0.

Proof. Let Z be a non-empty zero-set in v X xvY. Since v(X xvY) =
vX xvY, ZN(X xvY) #£ 0. Pick (z,y) € ZN (X xvY). Suppose that
ZN(X xY)=0. Then {z} xY)N(ZN(X xvY)) =0. Since {z} xY
is C-embedded in X x vY and Z N (X x vY) is a zero-set in X x vY,
{z} x Y and Z N (X x vY) are completely separated in X x vY([2]).
Hence ({z} x vY)N(ZN (X xvY)) = 0. Since (z,y) € {z} xvY)N
(ZN (X xvY)), this is a contradiction. Thus (X x Y)NZ # 0. O

DEFINITION 3.4. ([8]) Let X be a space and F a family of closed sets
in X. Then F is called a separating nest generated intersection ring on
X if

(1) for each closed set H in X and x € X — H, there are A, B in F such
that t€ A, H C Band ANB =0,

(2) it is closed under finite unions and countable intersections, and

(3) for any F' € F, there are sequences (F,), (G,) in F such that F' =
M{F,|né€N}and foranyne N, X — Hy41 C Fp1 € X — H, CF),.

For any space X, let Z(X) denotes the set of zero-sets in X. Then
Z(X) is a separating nest generated intersection ring on X.

Let X be space, F a separating nest generated intersection ring on X
and (w(X,F),wyx) the Wallman compactification of X associated with
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F([8]). Let v(X,F) = {a | o is an F-ultrafilter with the countable inter-
section property} be the subspace of w(X,F) and vy : X — v(X,F)
the corestriction of wx : X — w(X, F) with respect to v(X,F). Then
(v(X,F),vx) is a realcompactification of X (called the Wallman real-
compctification of X associated with F)([8]).

For any F C P(X) and A C X, let F4y ={FNA|F € F}. Fora
separating nest generated intersection ring F on X and A C X, F4 is a
separating nest generated intersection ring on A.

LEMMA 3.5. ([5]) A realcompactification Y of a space X is a Wallman

realcompactification of X if and only if for any non-empty zero-set Z in
Y, ZNX #0. In case, Y =v(Y, Z(Y)x).

By Proposition 2.2 and Proposition 3.2, we have the following corol-
lary.

COROLLARY 3.6. Let X and Y be spaces with non-measurable car-
dinal.
(1) If Y is a pseudo-compact space, then vX x vY is a Wallman real-
compactification of X associated with Z(vX x vY)xxy.
(2) If X is a P-space and Y has a dense weakly Lindeloff subspace, then
vX xvY is a Wallman realcompactification of X associated with Z(vX x
vY)xxy.

Note that for any space X, vX = v(X, Z(X))([2]). Using this, we
have the following :

THEOREM 3.7. Let X andY be spaces with non-measurable cardinal.
Then the following are equivalent :
(1) v(X xY) =vX xvY,
(2) X xY is z-embedded in X x vY and v(X x vY) =vX xvY,
(3) X xY is z-embedded in vX x vY and v(X x vY) = vX x vY, and
(4) X x Y is z-embedded in vX x vY and vX x vY is a Wallman real-
compactification of X X Y.

Proof. (1) = (2) Since v(X xY) =vX xvY, X xY is C-embedded
invX xvY and X x vY is C-embedded in vX x vY, because X x Y C
X xvY CvX xvY. Hence v(X x vY) =vX xvY. Since X x Y is
C-embedded in vX xvY, X XY is z-embedded in vX x vY and clearly,
X XY is z-embedded in X x vY.

(2)= (3) Since v(X x vY) = vX xvY, Z(X xvY) = Z(vX X
vY)xxoy and since X x Y is z-embedded in X x vY, Z(X xY) =
Z(X x vY)xxy. Hence Z(X xY) = Z(X x vY)xxy = (Z(vX X
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VY )xxoy)xxy = Z(vX x vY)xxy and hence X x Y is z-embedded in
vX xvY

(3) = (4) Since v(X x vY) = vX x VY, vX x vY is a Wallman
realcompactification of X x Y, by Theorem 3.3.

(4) = (1) Since vX xvY is a Wallman realcompactification of X x Y,
vX xvY = v(X XY, Z(vX x vY)xxy). Since X x Y is z-embedded
invX xvY, Z(X xY)=Z(vX xvY)xxy. Hence vX x vY = v(X X
Y, Z(X xY)) = 0(X x Y) 0

Every C*-embedded subspace S of a space X is z-embedded in X.
Hence we have the following corollary :

COROLLARY 3.8. Let X and Y be spaces with non-measurable car-
dinal. Suppose that v(X x vY) = vX x vY. Then the following are
equivalent :

(1) X xY is z-embedded in X x 3Y,
(2) X XY is z-embedded in X x vY,
(3) v(X xY)=vX xvY, and

(4) X xY is C*-embedded in X x Y.

Let X and Y be spaces with non-measurable cardinal. Then v(X X
vY) = vX x vY if Y is a pseudo-compact space. Hence we have the
following :

COROLLARY 3.9. Let X and Y be spaces with non-measurable cardi-
nal. Suppose that X is not a P-space. Then the followig are equivalent

(1) v(X xY) =0vX xvY,

(2) Y is a psuedo-compact space and X X Y is z-embedded in X x vY,
and

(3) Y is a psuedo-compact space and X XY is z-embedded in vX x vY.

By Proposition 3.2, we have the following :

COROLLARY 3.10. Let X andY be spaces with non-measurable cardi-
nal. Suppose that Y is not a pseudo-compact space with a dense weakly
Lindeloff space. Then the followig are equivalent :

(1) v(X xY) =vX xvY,
(2) X is a P-space and X x Y is z-embedded in X x vY, and
(3) X is a P-space and X x Y is z-embedded in vX X vY.

A space X is called a P’-space if every zero-set in X is a regular
closed set in X.
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COROLLARY 3.11. Let X and Y be spaces with non-measurable car-
dinal. If X x Y is a P'-space, then X x Y is z-embedded in X x vY if
and only if (X xY) =vX xvY.

Let X and Y be spaces such that (X xY) = X x Y. Then X xY
is a pseudo-compact space([3]) and Y is also a pseudo-compact space.
Hence we have the following :

COROLLARY 3.12. Let X and Y be spaces with non-measurable car-
dinal. If B(X xY) =X x fY, then v(X xY) =vX xvY.

1]
2l
B3l
(4]

(5]
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