REALCOMPACTIFICATION OF A PRODUCT SPACE

$$
X \times Y
$$

ChangIl Kim*

Abstract

Observing that $v X \times v Y$ is a Wallman realcompactification of $X \times Y$ if $v(X \times v Y)=v X \times v Y$, we show that $v(X \times Y)=$ $v X \times v Y$ if and only if $X \times Y$ is z-embedded in $v X \times v Y$ and $v X \times v Y$ is a Wallman compactification of $X \times Y$.

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and for any space $X, \beta X(v X$, resp.) denotes the Stone-Čech compactification (the Hewitt realcompactification, resp.) of X.

Glickberg $([3])$ showed that for any spaces X and $Y, \beta(X \times Y)=$ $\beta X \times \beta Y$, that is, $X \times Y$ is C^{*}-embedded in $\beta X \times \beta Y$ if and only if the product space $X \times Y$ is a pseudo-compact space. An important open question in the theory of Hewitt realcompactifications of spaces concerns when the equality $v(X \times Y)=v X \times v Y$ (that is, $X \times Y$ is C-embedded in $v X \times v Y)$ is valid $([4])$. Comfort $([1])$ showed that $v(X \times Y)=v X \times v Y$ if and only if $X \times Y$ is C^{*}-embedded in $v X \times v Y$ and that if X and Y have non-measurable cardinal and $X \times Y$ is C^{*}-embedded in $X \times \beta Y$, then $v(X \times Y)=v X \times v Y$. Moreover, Mcarthur([6]) showed that $X \times Y$ is C^{*} embedded in $X \times \beta Y$ if and only if the first projection $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map and that if $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map, then X is a P-space or Y is a pseudo-compact space.

In this paper, we first show that $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map if and only if $X \times Y$ is z-embedded in $X \times v Y$ and $X \times v Y$ is C^{*}-embedded

[^0]in $X \times \beta Y$ and that for spaces X and Y with non-measurable cardinal and $v(X \times v Y)=v X \times v Y, v X \times v Y$ is a Wallman realcompactification of $X \times Y$ associated with $Z(v X \times v Y)_{X \times Y}$. In particular, we show that if X is a P-space and Y is a weakly Lindelöff space, then $v(X \times v Y)=$ $v X \times v Y$. Using these, we will show that the following are equivalent :
(1) $v(X \times Y)=v X \times v Y$,
(2) $X \times Y$ is z-embedded in $X \times v Y$ and $v(X \times v Y)=v X \times v Y$,
(3) $X \times Y$ is z-embedded in $v X \times v Y$ and $v(X \times v Y)=v X \times v Y$, and
(4) $X \times Y$ is z-embedded in $v X \times v Y$ and $v X \times v Y$ is a Wallman realcompactification of $X \times Y$.

For the terminology, we refer to $[2,7]$.

2. z-closed maps

A subset A of a space X is called a zero-set in X if there is a realvalued continuous function f on X such that $A=f^{-1}(0)$. A countable intersection of zero-sets in a space X is a zero-set in X and a finite union of zero-sets in X is a zero-set in X.

Definition 2.1. Let X and Y be spaces. Then the first projection $\pi_{X}: X \times Y \longrightarrow X$ is called $a z$-closed map if for any zero-set A in $X \times Y$, $\pi_{X}(A)$ is a closed set in X.

A space X is called $a P$-space if every G_{δ}-set in X, that is, a countable intersection of open sets in X is open in X. Clearly, a space X is a P space if and only if every zero-set in X is open in X.

Proposition 2.2.

(1) Let X be a P-space and Y a Lindelöff space. Then $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map.
(2) Let X be a space and Y a compact space. Then $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map.

Proof. (1) Let A be a zero-set in $X \times Y$. Suppose that there is an x in $X-\pi_{X}(A)$. Then $(\{x\} \times Y) \cap A=\emptyset$. For each $y \in Y$, there are zero-sets E_{y} and F_{y} in X and Y, resp. such that $x \in \operatorname{int}_{X}\left(E_{y}\right), y \in \operatorname{int}_{Y}\left(F_{y}\right)$ and $\left(E_{y} \times F_{y}\right) \cap A=\emptyset$. Since Y is a Lindelöff space, there is a sequence $\left(y_{n}\right)$ in Y such that $\cup\left\{F_{y_{n}} \mid n \in N\right\}=Y$. Let $Z=\cap\left\{E_{y_{n}} \mid n \in N\right\}$. Then $(Z \times Y) \cap A=\emptyset$ and $Z \cap \pi_{X}(A)=\emptyset$. Since X is a P-space and Z is a zero-set in X, Z is an open neighborhood of x in X and hence
$x \notin c l_{X}\left(\pi_{X}(A)\right)$. Since $c l_{X}\left(\pi_{X}(A)\right) \subseteq \pi_{X}(A), \pi_{X}(A)$ is closed in X. Hence π_{X} is a z-closed map.

Similarly, we have (2).
A pair (Y, j) or simply Y is called a compactification(realcompactification, resp.) of a space X if Y is a compact space(a realcompact space, resp.) and $j: X \longrightarrow Y$ is a dense embedding. The ring of real-valued continuous functions on a space X is denoted by $C(X)$ and $C^{*}(X)$ denotes the subring of bounded functions of $C(X)$. A subspace S of a space X is called C-embedded(C^{*}-embedded, resp.) in X if every function in $C(S)\left(C^{*}(S)\right.$, resp.) extends to a function in $C(X)\left(C^{*}(X)\right.$, resp.). Every space X has the unique compactification βX (realcompactification $v X$, resp.) in which X is densely C^{*}-embedded (C-embedded, resp.)([2]).

Lemma 2.3. Let X and Y be spaces and $x \in X$. Then
(1) $\{x\} \times Y$ is C-embedded in $X \times v Y$, and
(2) $\{x\} \times Y$ is C^{*}-embedded in $X \times \beta Y$.

Proof. (1) Let $f \in C(\{x\} \times Y)$. The map $h: Y \longrightarrow\{x\} \times Y$, defined by $h(y)=(x, y)$, is a homeomorphism. Since $f \circ h: Y \longrightarrow R$ is a continuous map, there is a continuous map $g: v Y \longrightarrow R$ such that $\left.g\right|_{Y}=f \circ h$. Then the map $k: X \times v Y \longrightarrow R$, defined by $k(a, y)=g(y)$, is a continuous map and for any $y \in Y, k(x, y)=g(y)=f(h(y))=f(x, y)$. Hence $\left.k\right|_{X \times Y}=f$ and k is the extension of f to $X \times v Y$.

Similarly, we have (2).
Lemma 2.4. ([6]) Let X and Y be spaces. Then $X \times Y$ is C^{*} embedded in $X \times \beta Y$ if and only if $\pi_{X}: X \times Y \longrightarrow X$ is z-closed.

A subspace S in a space X is called z-embedded in X if for any zero-set Z in S, there is a zero-set A in X such that $Z=A \cap S$.

Recall that a C^{*}-embedded subspace S of a space X is C-embedded in X if and only if for any zero-set Z in X such that $S \cap Z=\emptyset, S$ and Z are completely separated in X, that is, there is a real-valued continuous map f on X such that $S \subseteq f^{-1}(0)$ and $Z \subseteq f^{-1}(1)([2])$.

Proposition 2.5. Let X and Y be spaces. Then $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map if and only if $X \times Y$ is z-embedded in $X \times v Y$ and $X \times v Y$ is C^{*}-embedded in $X \times \beta Y$.

Proof. Suppose that $X \times Y$ is z-embedded in $X \times v Y$ and $X \times v Y$ is C^{*}-embedded in $X \times \beta Y$. Let A be a zero-set in $X \times Y$ and $x \in$ $X-\pi_{X}(A)$. Then $\pi_{X}^{-1}(x) \cap A=\emptyset$. Since $X \times Y$ is z-embedded in $X \times v Y$, there is a zero-set B in $X \times v Y$ such that $A=B \cap(X \times Y)$. Then
$(\{x\} \times Y) \cap B=\emptyset$. By Lemma 2.3, $\{x\} \times Y$ is C-embedded in $X \times v Y$ and hence there are disjoint zero-set C, D in $X \times v Y$ such that $\{x\} \times Y \subseteq C$ and $B \subseteq D$. Since $X \times v Y$ is C^{*}-embedded in $X \times \beta Y$, by Urysohn's extension theorem, $c l_{X \times \beta Y}(C) \cap c l_{X \times \beta Y}(D)=\emptyset$. Since $\{x\} \times \beta Y \subseteq$ $c l_{X \times \beta Y}(C)$ and $c l_{X \times \beta Y}(B) \subseteq c l_{X \times \beta Y}(D),(\{x\} \times \beta Y) \cap c l_{X \times \beta Y}(B)=\emptyset$. Since βY is a compact space, there is a open neighborhood U of x in X such that $(U \times \beta Y) \cap c l_{X \times \beta Y}(B)=\emptyset$ and hence $(U \times Y) \cap A=\emptyset$. Since $U \cap \pi_{X}(A)=\emptyset, x \notin c l_{X}\left(\pi_{X}(A)\right)$ and thus $\pi: X \times Y \longrightarrow X$ is a z-closed map.

The converse is trivial.
Note that $\pi_{X}: X \times v Y \longrightarrow X$ is a z-closed map if and only if $X \times v Y$ is C^{*}-embedded in $X \times \beta Y$. Hence we have the following :

Corollary 2.6. Let X and Y be spaces. Then $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map if and only if $X \times Y$ is z-embedded in $X \times v Y$ and $\pi_{X}: X \times v Y \longrightarrow X$ is a z-closed map.

3. Realcompactification of a product space $X \times Y$

The equality $v(X \times Y)=v X \times v Y$ is to be interpreted to mean that $X \times Y$ is C-embedded in $v X \times v Y$. For spaces X and $Y, v(X \times Y)=$ $v X \times v Y$ if and only if $X \times Y$ is C^{*}-embedded in $v X \times v Y([1])$. Let X and Y be spaces with non-measurable cardinal. If $X \times Y$ is C^{*}-embedded in $X \times \beta Y$, then $v(X \times Y)=v X \times v Y([6])$. A space X is called a pseudo-compact space if $C(X)=C^{*}(X)$, equivalently, $v X=\beta X$. If $\pi_{X}: X \times Y \longrightarrow X$ is a z-closed map, then X is a P-space or Y is a pseudo-compact space([6]).

By Proposition 2.2, we have the following proposition:
Proposition 3.1. Let X and Y be spaces with non-measurable cardinal. Suppose that Y is a pseudo-compact space. Then $v(X \times v Y)=$ $v X \times v Y$.

A space X is called a weakly Lindelöff space if for any open cover \mathcal{U} of X, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $\cup\{V \mid V \in \mathcal{V}\}$ is dense in X. A space with a dense weakly Lindelöff subspace is also a weakly Lindelöff space.

Proposition 3.2. Let X and Y be spaces with non-measurable cardinal. Suppose that Y has a dense weakly Lindelöff subspace. Then $v(X \times v Y)=v X \times v Y$.

Proof. We will show that $\pi_{X}: X \times v Y \longrightarrow X$ is a z-closed map. Take any zero-set Z in $X \times v Y$ and $x \in X-\pi_{X}(A)$. Then $(\{x\} \times v Y) \cap Z=\emptyset$. Hence $(\{x\} \times Y) \cap Z=\emptyset$ and by Lemma 2.3, there are disjoint zerosets A and B in $X \times v Y$ such that $\{x\} \times v Y \subseteq i n t_{X \times v Y}(A)$ and $Z \subseteq$ $\operatorname{int}_{X \times v Y}(B)$. For any $y \in v Y$, there is a zero-sets neighborhood $E_{y}\left(F_{y}\right.$, resp.) of $x(y$, resp. $)$ in $X(v Y$, resp. $)$ such that $E_{y} \times F_{y} \subseteq i n t_{X \times v Y}(A)$. Since $v Y$ is a weakly Lindelöff space, there is a sequence $\left(y_{n}\right)$ in $v Y$ such that $\cup\left\{F_{y_{n}} \mid n \in N\right\}$ is dense in $v Y$. Let $G=\cap\left\{E_{y_{n}} \mid n \in\right.$ $N\}$ and $H=\cup\left\{F_{y_{n}} \mid n \in N\right\}$. Since $(G \times H) \cap i n t_{X \times v Y}(B)=\emptyset$, $c l_{X \times v Y}(G \times H) \cap i n t_{X \times v Y}(B)=\left(c l_{X}(G) \times c l_{v Y}(H)\right) \cap i n t_{X \times v Y}(B)=$ $(G \times v Y) \cap i n t_{X \times v Y}(B)=\emptyset$. Hence $G \cap \pi_{X}(Z)=\emptyset$. Since X is a P-space and G is a zero-set in $X, x \notin c l_{X}\left(\pi_{X}(Z)\right)$. So $\pi_{X}: X \times v Y \longrightarrow X$ is a z-closed map and thus $v(X \times v Y)=v X \times v Y$.

Let X be a space and A a zero-set in X. Then $c l_{v X}(A)$ is also a zeroset in $v X$. Hence for any non-empty zero-set Z in $v X, Z \cap X \neq \emptyset([7])$.

Theorem 3.3. Let X and Y be spaces with non-measurable cardinal. Suppose that $v(X \times v Y)=v X \times v Y$. For any non-empty zero-set Z in $v X \times v Y, Z \cap(X \times Y) \neq \emptyset$.

Proof. Let Z be a non-empty zero-set in $v X \times v Y$. Since $v(X \times v Y)=$ $v X \times v Y, Z \cap(X \times v Y) \neq \emptyset$. Pick $(x, y) \in Z \cap(X \times v Y)$. Suppose that $Z \cap(X \times Y)=\emptyset$. Then $(\{x\} \times Y) \cap(Z \cap(X \times v Y))=\emptyset$. Since $\{x\} \times Y$ is C-embedded in $X \times v Y$ and $Z \cap(X \times v Y)$ is a zero-set in $X \times v Y$, $\{x\} \times Y$ and $Z \cap(X \times v Y)$ are completely separated in $X \times v Y([2])$. Hence $(\{x\} \times v Y) \cap(Z \cap(X \times v Y))=\emptyset$. Since $(x, y) \in(\{x\} \times v Y) \cap$ $(Z \cap(X \times v Y))$, this is a contradiction. Thus $(X \times Y) \cap Z \neq \emptyset$.

Definition 3.4. ([8]) Let X be a space and \mathcal{F} a family of closed sets in X. Then \mathcal{F} is called a separating nest generated intersection ring on X if
(1) for each closed set H in X and $x \in X-H$, there are A, B in \mathcal{F} such that $x \in A, H \subseteq B$ and $A \cap B=\emptyset$,
(2) it is closed under finite unions and countable intersections, and
(3) for any $F \in \mathcal{F}$, there are sequences $\left(F_{n}\right),\left(G_{n}\right)$ in \mathcal{F} such that $F=$ $\cap\left\{F_{n} \mid n \in N\right\}$ and for any $n \in N, X-H_{n+1} \subseteq F_{n+1} \subseteq X-H_{n} \subseteq F_{n}$.

For any space X, let $Z(X)$ denotes the set of zero-sets in X. Then $Z(X)$ is a separating nest generated intersection ring on X.

Let X be space, \mathcal{F} a separating nest generated intersection ring on X and $\left(\omega(X, \mathcal{F}), \omega_{X}\right)$ the Wallman compactification of X associated with
$\mathcal{F}([8])$. Let $v(X, \mathcal{F})=\{\alpha \mid \alpha$ is an \mathcal{F}-ultrafilter with the countable intersection property $\}$ be the subspace of $\omega(X, \mathcal{F})$ and $v_{X}: X \longrightarrow v(X, \mathcal{F})$ the corestriction of $\omega_{X}: X \longrightarrow \omega(X, \mathcal{F})$ with respect to $v(X, \mathcal{F})$. Then $\left(v(X, \mathcal{F}), v_{X}\right)$ is a realcompactification of X (called the Wallman realcompctification of X associated with $\mathcal{F})([8])$.

For any $\mathcal{F} \subseteq P(X)$ and $A \subseteq X$, let $\mathcal{F}_{A}=\{F \cap A \mid F \in \mathcal{F}\}$. For a separating nest generated intersection ring \mathcal{F} on X and $A \subseteq X, \mathcal{F}_{A}$ is a separating nest generated intersection ring on A.

Lemma 3.5. ([5]) A realcompactification Y of a space X is a Wallman realcompactification of X if and only if for any non-empty zero-set Z in $Y, Z \cap X \neq \emptyset$. In case, $Y=v\left(Y, Z(Y)_{X}\right)$.

By Proposition 2.2 and Proposition 3.2, we have the following corollary.

Corollary 3.6. Let X and Y be spaces with non-measurable cardinal.
(1) If Y is a pseudo-compact space, then $v X \times v Y$ is a Wallman realcompactification of X associated with $Z(v X \times v Y)_{X \times Y}$.
(2) If X is a P-space and Y has a dense weakly Lindelöff subspace, then $v X \times v Y$ is a Wallman realcompactification of X associated with $Z(v X \times$ $v Y)_{X \times Y}$.

Note that for any space $X, v X=v(X, Z(X))([2])$. Using this, we have the following :

Theorem 3.7. Let X and Y be spaces with non-measurable cardinal. Then the following are equivalent :
(1) $v(X \times Y)=v X \times v Y$,
(2) $X \times Y$ is z-embedded in $X \times v Y$ and $v(X \times v Y)=v X \times v Y$,
(3) $X \times Y$ is z-embedded in $v X \times v Y$ and $v(X \times v Y)=v X \times v Y$, and
(4) $X \times Y$ is z-embedded in $v X \times v Y$ and $v X \times v Y$ is a Wallman realcompactification of $X \times Y$.

Proof. (1) \Rightarrow (2) Since $v(X \times Y)=v X \times v Y, X \times Y$ is C-embedded in $v X \times v Y$ and $X \times v Y$ is C-embedded in $v X \times v Y$, because $X \times Y \subseteq$ $X \times v Y \subseteq v X \times v Y$. Hence $v(X \times v Y)=v X \times v Y$. Since $X \times Y$ is C-embedded in $v X \times v Y, X \times Y$ is z-embedded in $v X \times v Y$ and clearly, $X \times Y$ is z-embedded in $X \times v Y$.
$(2) \Rightarrow(3)$ Since $v(X \times v Y)=v X \times v Y, Z(X \times v Y)=Z(v X \times$ $v Y)_{X \times v Y}$ and since $X \times Y$ is z-embedded in $X \times v Y, Z(X \times Y)=$ $Z(X \times v Y)_{X \times Y}$. Hence $Z(X \times Y)=Z(X \times v Y)_{X \times Y}=(Z(v X \times$
$\left.v Y)_{X \times v Y}\right)_{X \times Y}=Z(v X \times v Y)_{X \times Y}$ and hence $X \times Y$ is z-embedded in $v X \times v Y$
(3) \Rightarrow (4) Since $v(X \times v Y)=v X \times v Y, v X \times v Y$ is a Wallman realcompactification of $X \times Y$, by Theorem 3.3.
$(4) \Rightarrow(1)$ Since $v X \times v Y$ is a Wallman realcompactification of $X \times Y$, $v X \times v Y=v\left(X \times Y, Z(v X \times v Y)_{X \times Y}\right)$. Since $X \times Y$ is z-embedded in $v X \times v Y, Z(X \times Y)=Z(v X \times v Y)_{X \times Y}$. Hence $v X \times v Y=v(X \times$ $Y, Z(X \times Y))=v(X \times Y)$

Every C^{*}-embedded subspace S of a space X is z-embedded in X. Hence we have the following corollary :

Corollary 3.8. Let X and Y be spaces with non-measurable cardinal. Suppose that $v(X \times v Y)=v X \times v Y$. Then the following are equivalent:
(1) $X \times Y$ is z-embedded in $X \times \beta Y$,
(2) $X \times Y$ is z-embedded in $X \times v Y$,
(3) $v(X \times Y)=v X \times v Y$, and
(4) $X \times Y$ is C^{*}-embedded in $X \times \beta Y$.

Let X and Y be spaces with non-measurable cardinal. Then $v(X \times$ $v Y)=v X \times v Y$ if Y is a pseudo-compact space. Hence we have the following :

Corollary 3.9. Let X and Y be spaces with non-measurable cardinal. Suppose that X is not a P-space. Then the followig are equivalent
(1) $v(X \times Y)=v X \times v Y$,
(2) Y is a psuedo-compact space and $X \times Y$ is z-embedded in $X \times v Y$, and
(3) Y is a psuedo-compact space and $X \times Y$ is z-embedded in $v X \times v Y$.

By Proposition 3.2, we have the following :
Corollary 3.10. Let X and Y be spaces with non-measurable cardinal. Suppose that Y is not a pseudo-compact space with a dense weakly Lindelöff space. Then the followig are equivalent :
(1) $v(X \times Y)=v X \times v Y$,
(2) X is a P-space and $X \times Y$ is z-embedded in $X \times v Y$, and
(3) X is a P-space and $X \times Y$ is z-embedded in $v X \times v Y$.

A space X is called $a P^{\prime}$-space if every zero-set in X is a regular closed set in X.

Corollary 3.11. Let X and Y be spaces with non-measurable cardinal. If $X \times Y$ is a P^{\prime}-space, then $X \times Y$ is z-embedded in $X \times v Y$ if and only if $v(X \times Y)=v X \times v Y$.

Let X and Y be spaces such that $\beta(X \times Y)=\beta X \times \beta Y$. Then $X \times Y$ is a pseudo-compact space $([3])$ and Y is also a pseudo-compact space. Hence we have the following :

Corollary 3.12. Let X and Y be spaces with non-measurable cardinal. If $\beta(X \times Y)=\beta X \times \beta Y$, then $v(X \times Y)=v X \times v Y$.

References

[1] W. W. Comfort, On Hewitt realcompactification of a product space, Trans. Amer. Math. Soc. 181 (1968), 107-118.
[2] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
[3] I. Glicksberg, Stone-Čech compactification of product space, Trans. Amer. Math. Soc. 90 (1959), 369-382.
[4] H. Herrlich and M. Hušek, Some open categorical problems in TOP, Applied Categorical Structure 1 (1993), 1-19.
[5] C. I. Kim and Kap Hun Jung, Hewitt realcompactifications of minimal quasi-F covers, Kangweon-Kungki Math. Jour. 10 (2002), 45-51.
[6] W. G. Mcarthur, Hewitt realcompactifications of product spaces, Canadian J. Math. 22 (1970), no. 3, 645-656.
[7] J. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin, 1988.
[8] A. K. Steiner and E. F. Steiner, Nested generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1970), 779-804.
*
Department of Mathematics Education
Dankook University
Yongin-si, Gyeonggi-do 448-701, Republic of Korea
E-mail: kci206@hanmail.net

[^0]: Received July 28, 2011; Accepted August 25, 2011.
 2010 Mathematics Subject Classification: Primary 54D35, 54C10; Secondary 54C45, 54D60.

 Key words and phrases: C^{*}-embedded, C-embedded, compactification, realcompactification, z-closed map.

 The present research was conducted by the research fund of Dankook University in 2010.

