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COMPLETION OF STOCHASTIC HANKEL PARTIAL
CONTRACTIONS OF EXTREMAL TYPE

Jun Ik Lee*

Abstract. We find concrete necessary and sufficient conditions
for the existence of contractive completions of Stochastic Hankel
partial contractions of size 4× 4, extremal type.

1. Introduction

For 2 × 2 operator matrices (with no required Hankel condition), a
solution to the completion problem

(
A B
C X

)

has been given by G. Arsene and A. Gheondea [1], by C. Davis, W.
Kahan and H. Weinberger [8] (see also [7] and [3]), by C. Foiaş and A.
Frazho [9] (using Redheffer products), by S. Parrott [13], and by Y. L.
Shmul’yan and R. N. Yanovskaya [15]; a solution is also implicit in the
work of W. Arveson [2] (see also [14] and [11]).

A Hankel matrix is a square matrix with constant skew-diagonals. A
stochastic matrix (or transition matrix ) is a matrix used to describe the
transitions of a Markov chain and whose rows and columns consists of
nonnegative real numbers, with each row summing to 1 and each column
summing to 1, respectively. A Hankel stochastic partial contraction is a
Hankel stochastic matrix such that not all of its entries are determined,
but in which every well-defined submatrix is a contraction. In this
article, we study the problem of whether a Hankel stochastic partial
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contraction in which the upper left triangle is known can be completed
to a contraction. Given real numbers a1, · · · , an, let
(1.1)

SH ≡ SH(a1, a2, · · · , an; x1, · · · , xn−1) :=




a1 a2 · · · an−1 an

a2 a3 · · · an x1

..

.
..
.

. . .
..
.

..

.
an−1 an · · · xn−3 xn−2

an x1 · · · xn−2 xn−1




be a Hankel stochastic matrix, where x1, · · · , xn−1 are real numbers to
be determined. We say that SH is a partial contraction if all completely
determined submatrices of SH are contractions (in the sense that their
operator norms are at most 1).

Problem 1.1. Given real numbers a1, a2, · · · , an, find real numbers
x1, · · · , xn−1 such that

SH(a1, a2, · · · , an; x1, · · · , xn−1)

is contractive.

We say that Problem 1.1 is well-posed if

SH(a1, a2, · · · , an; x1, · · · , xn−1)

is partially contractive, and that it is soluble if

SH(a1, a2, · · · , an; x1, · · · , xn−1)

is contractive for some x1, · · · , xn−1. We also say that H(a1, a2, · · · , an;
x1, · · · , xn−1) is extremal if a2

1 + · · ·+ a2
n = 1.

In [5, Section 4], the authors find necessary and sufficient conditions
for the existence of contractive completions of Hankel partial contrac-
tions for extremal type of 4× 4 case. In this paper, we find completely
necessary and sufficient conditions for the existence of contractive com-
pletions of 4×4 Stochastic Hankel partial contractions for extremal type
of 4×4 case by using a new technique, that is, the Moore-Penrose inverse
of a matrix.

2. Some technical lemmas

For the reader’s convenience, in this section we gather several auxil-
iary results which are needed for the proofs of the main results in this
article. First, we begin by recalling that an n × n matrix M is a con-
traction if and only if the matrix

P ≡ P (M) := I −MM∗
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is positive semi-definite (in symbols, P ≥ 0), where I is the identity
matrix and M∗ is the adjoint of M . In order to check the positivity of
P , we use the following version of Choleski’s Algorithm.

Lemma 2.1. ([4]) Assume that

P =
(

u t
t∗ P0

)
,

where P0 is an (n− 1)× (n− 1) matrix, t is a row vector, and u is a real
number.
(i) If P0 is invertible, then detP = detP0(u− tP−1

0 t∗).
(ii) If P0 is invertible and positive, then P ≥ 0 ⇔ (u− tP−1

0 t∗) ≥ 0 ⇔
det P ≥ 0.
(iii) If u > 0 then P ≥ 0 ⇔ P0 − t∗u−1t ≥ 0.
(iv) If P ≥ 0 and pii = 0 for some i, 1 ≤ i ≤ n, then pij = pji = 0 for
all j = 1, · · · , n.

We recall that for a m×n matrix A, a Moore-Penrose inverse of A is
defined as a matrix as a n×m matrix A† satisfying all of the following
four creteria:
AA†A = A; A†AA† = A†;

(
AA†

)∗ = AA† (AA† is Hermitian);(
A†A

)∗ = A†A (A†A is Hermitian).
The following result is a special form of Smul’jan’s Lemma [16].

Lemma 2.2. ([16]) Let P ≡
(

A B
B∗ C

)
be a finite matrix. Then

P ≥ 0 if and only if the following conditions hold:
(i) A ≥ 0;
(ii) ran B ⊆ ran A; and
(iii) C ≥ B∗A†B, where A† is a Moore-Penrose inverse of A.

Lemma 2.3. (cf. [8], [13]) If

(
A
C

)
and

(
A B

)
are rectangu-

lar contractions, then there exists a matrix D such that the matrix(
A B
C D

)
is a contraction as well.

For the study of the Stochastic Hankel contractive completions of the
case of 3× 3 matrices, we let

SH3 := SH(a, b, c;x, y) =




a b c
b c x
c x y


 ∈ M3(R) (0 ≤ a, b, c ≤ 1)

and
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P (SH3)(x, y) = I − SH3 (SH3)
∗ ≡ (pij)3i,j=1

=




1− a2 − b2 − c2 −ab− bc− cx −ac− bx− cy
−ab− bc− cx 1− b2 − c2 − x2 −bc− cx− xy
−ac− bx− cy −bc− cx− xy 1− c2 − x2 − y2


 .

We also let

P22 := I −
(

a b
b c

)(
a b
b c

)
=

(
1− a2 − b2 −ab− bc
−ab− bc 1− b2 − c2

)

and

P23 (x) : = I −
(

a b c
b c x

) 


a b
b c
c x




=
(

1− a2 − b2 − c2 −ab− bc− cx
−ab− bc− cx 1− b2 − c2 − x2

)
.

3. Partially contractive stochastic Hankel matrices: the case
3× 3

Since ‖S‖ ≤ ‖T‖ if S is a submatrix of the matrix T , it follows
that each submatrix of a contraction is again a contraction. Thus, a
necessary condition for a partial matrix T to be contraction is that each
submatrix must be a contraction. We call a partial matrix meeting this
necessary condition a partial contraction (well-posed condition).

We begin with known results for the reader’s convenience. In Theo-
rem 3.2 we formulate an improved version of a result in [5, Theorem 3.2]
using the Moore-Penrose inverse of a matrix in Lemma 2.2. Theorem
3.2 is a crucial tool to prove our main results.

Proposition 3.1. Let SH2 := SH(a, b;x) =
(

a b
b x

)
∈ M2(R). If

SH2 is well-posed then SH2 admits a contractive completion. Moreover,
x = a.

Proof. Since SH2 is a stochastic matrix, we must choose x = a. A
straightforward calculation shows that

‖SH2‖ ≤ 1 ⇐⇒ I − SH2 (SH2)
∗ =

(
1− a2 − b2 −2ab
−2ab 1− a2 − b2

)
≥ 0.

Since SH2 is a stochastic matrix, we have ab = 0 and a + b = 1. Thus
we have the desired result.
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Theorem 3.2. Assume that SH3 = SH(a, b, c, x; y) is well-posed.
Then SH3 admits a contractive completion; in particular, x = a and
y = b.

Proof. Since SH3 is a stochastic matrix, we must choose x = a and
y = b. By Lemma 2.3, observe that SH3 has a contractive completion
if and only if P (SH3)(a, b) ≥ 0.
Case 1: {a, b, c} is extremal. Since SH3 is a stochastic matrix, we
have a + b + c = a2 + b2 + c2 and ab + bc + ca = 0. Thus we have

P (SH3)(a, b) ≥ 0.

Case 2: {a, b, c} is not extremal. Note that

P (SH3)(a, b) ≥ 0 ⇐⇒ D ≡
(

d11 d12

d21 d22

)
≥ 0,

where d11 := (1−a2−b2−c2−(ab+bc+cd))(1−a2−b2−c2+(ab+bc+cd))
1−a2−b2−c2

,

d12 = d21 := − (ab+bc+cd)(1−a2−b2−c2+(ab+bc+cd))
1−a2−b2−c2

and

d22 := (1−a2−b2−c2−(ab+bc+cd))(1−a2−b2−c2+(ab+bc+cd))
1−a2−b2−c2

.

Since a2 + b2 + c2 < 1 and SH3 is a stochastic matrix, observe that
ab + bc + ca 6= 0.
If 1− a2 − b2 − c2 = (ab + bc + cd). Then P (SH3)(a, b) ≥ 0.

If 1− a2− b2− c2 = − (ab + bc + cd). Then we have ab+ bc+ ca = 0
which drives a contradiction to the assumption.

If 1− a2 − b2 − c2 > (ab + bc + cd). Then we have

P (SH3)(a, b) ≥ 0 ⇐⇒ det D ≥ 0.

A direct calculation shows that detD = 0. Thus we have the desired
result.

4. Partially contractive stochastic Hankel matrices of ex-
tremal type: the case 4× 4

We now focus attention on the extremal case for 4×4 Hankel matrices,
i.e., a2 + b2 + c2 + d2 = 1. Consider the solubility of Problem 1.1 for
a Stochastic Hankel matrix SH4 := SH(a, b, c, d; x, y, z), which is well-
posed and with {a, b, c, d} extremal.

Theorem 4.1. Assume that SH4 is well-posed. Then SH4 admits a
contractive completion if and only if ac + bd = 0. In particular, x = a,
y = b and z = c.
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Proof. Since SH4 is a stochastic matrix, we must choose x = a, y =
b and z = c. By Lemma 2.3, observe that SH4 has a contractive
completion if and only if P (SH4)(a, b, c) ≥ 0. By a direct calculation,
we have
(4.1)

P (SH4)(a, b, c)

=




p11 −(a + c)(b + d) −2(ac + bd) −(a + c)(b + d)
−(a + c)(b + d) p11 −(a + c)(b + d) −2(ac + bd)
−2(ac + bd) −(a + c)(b + d) p11 −(a + c)(b + d)

−(a + c)(b + d) −2(ac + bd) −(a + c)(b + d) p11


,

where p11 := 1 − a2 − b2 − c2 − d2. Since SH4 is a stochastic matrix,
we have a + b + c + d = a2 + b2 + c2 + d2 and ab + bc + cd + da = 0.
(=⇒) : We assume that SH4 admits a contractive completion.
Since {a, b, c, d} is extremal. Then we have p11 = 0 and ac + bd = 0.
Thus we have P (SH4)(a, b, c) ≥ 0.
(⇐=) : We assume that ac + bd = 0. Then by (4.1), SH4 admits a
contractive completion.
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