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EQUIVARIANT VECTOR BUNDLES AND
CLASSIFICATION OF NONEQUIVARIANT VECTOR

ORBIBUNDLES

Min Kyu Kim*

Abstract. Let a finite group R act smoothly on a closed manifold
M. We assume that R acts freely on M except a union of closed
submanifolds with codimension at least two. Then, we show that
there exists an isomorphism between equivariant topological com-
plex vector bundles over M and nonequivariant topological com-
plex vector orbibundles over the orbifold M/R. By using this, we
can classify nonequivariant vector orbibundles over the orbifold es-
pecially when the manifold is two-sphere because we have classified
equivariant topological complex vector bundles over two sphere un-
der a compact Lie group (not necessarily effective) action in [6].
This classification of orbibundles conversely explains for one of two
exceptional cases of [6].

1. Introduction

Let M be a closed smooth manifold and R be a finite group acting
smoothly on M. If M is orientable, let Rrot ⊂ R be the subgroup of
elements preserving an orientation of M. If the action is free, then there
exists an isomorphism between equivariant vector bundles over M and
nonequivariant vector bundles over M/R [1, Proposition 1.6.1], [11, p.
132]. This classical result can be slightly generalized. For this, we
introduce some notations and an assumption on group action. Assume
that the R-action satisfies the following condition:

A1. R acts freely on M except a union of submanifolds with codimen-
sion at least two.
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We remark that the action satisfying Condition A1. is not necessarily
orient preserving. By the assumption, the quotient by the action car-
ries the orbifold structure by slice theorem. We use notations M/R and
|M/R| to denote the orbifold and its underlying topological space, re-
spectively. Let o : M → M/R be the orbit map. And, if M is orientable,
let

o1 : M → M/Rrot and o2 : M/Rrot → M/R

be two consecutive orbit maps so that o = o2 ◦ o1 where M/R is dif-
feomorphic to (M/Rrot)

/
(R/Rrot). For notational simplicity, we use the

same notations to denote underlying continuous maps of o, o1, o2. De-
note by Vect(M/R) and VectR(M) sets of the isomorphism classes of
nonequivariant topological complex vector orbibundles over M/R and
equivariant topological complex vector bundles over M, respectively. For
orbifold and orbibundle, see [3]. Recalling that the pullback of an orbi-
bundle need not always exist, we state our first result.

Proposition 1.1. Assume that the R-action on M satisfies Condi-
tion A1. Then, two maps

o∗2 : Vect(M/R) −→ VectR/Rrot
(M/Rrot), [E] 7−→ [o∗2E],

o∗1 : VectR/Rrot
(M/Rrot) −→ VectR(M), [F ] 7−→ [o∗1F ]

are well-defined isomorphisms.

By using this, we can classify nonequivariant topological complex vec-
tor orbibundles over M/R when equivariant topological complex vector
bundles over M have been classified. In [6], Kim has classified equi-
variant topological complex vector bundles over S2 under a compact Lie
group (not necessarily effective) action. So, we can classify nonequiv-
ariant topological complex vector orbibundles over M/R when M = S2

and the R-action on M satisfies Condition A1. In the remaining of
Introduction, we deal with the case of M = S2.

In [6], Theorem A, B, C classify three different types of equivari-
ant vector bundles over S2 by different invariants. Theorem C classifies
equivariant vector bundles by their isotropy representations at (at most)
three points of S2. This seems similar to the classical result on classifica-
tion of equivariant vector bundles over a transitive action [11, p. 130], [2,
Proposition II.3.2] in which classification is done by an isotropy repre-
sentation at one point of a base space. Theorem A classifies equivariant
vector bundles by their nonequivariant Chern classes and their isotropy
representations at (at most) three points of S2, and lists possible Chern
classes. Theorem B classifies two exceptional cases. These two cases are
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not classified even by nonequivariant Chern classes and isotropy repre-
sentations. To give a precise explanation for one of these two exceptional
cases, Kim has classified equivariant topological complex vector bundles
over RP2 under a compact Lie group (not necessarily effective) action in
[7]. By using results of this paper, we explain for possible Chern classes
of Theorem A and one remaining case of Theorem B.

To state our results, we list all possible finite group actions on S2

up to conjugacy which satisfy Condition A1. For this, we use the well-
known fact that a topological action on S2 by a compact Lie group is
conjugate to a linear action [8, Theorem 1.2], [5]. Let O(3) and its finite
subgroups act usually on S2. We introduce some finite subgroups of O(3)
as follows:

1. Z = {id,− id},
2. Zn generated by the rotation an through the angle 2π/n around

z-axis,
3. Dn generated by an and the rotation b through the angle π around

x-axis where we assume n > 1 because D1 is conjugate to Z2,
4. T, O, I are (orient preserving) rotation groups of a regular tetrahe-

dron, a regular octahedron, a regular icosahedron which have the
origin as their centers, respectively. Here, we choose the regular
tetrahedron to be inscribed to the regular octahedron as duality.

Note that T ⊂ O, and pick an element o0 of O \ T so that O = 〈T, o0〉.
In Section 4, we show that the action of a finite subgroup R of O(3) on
S2 satisfies Condition A1. if and only if it is conjugate to one of

(1.1)
Dn, n > 1, Zn, T,
O, I, Zn × Z, odd n,
〈−an〉, even n/2

where the symbol × means the internal direct product of two subgroups
in O(3). We observe that groups of (1.1) are finite groups appearing in
[6, Theorem A, B].

In [6], a semigroup epimorphism

pvect : VectR(S2) → AR(S2, id)

is defined where pvect sends an equivariant vector bundle to its isotropy
representations at (at most) three points and AR(S2, id) is a semigroup
defined by using these isotropy representations. Elements of AR(S2, id)
are pairs or triples of representations. Denote by p′vect and p′′vect com-
positions pvect ◦ o1∗ and pvect ◦ o∗, respectively. Then, we have two
classification results.
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Theorem A. Assume that R is equal to one of

Dn, n > 1, Zn, T, O, I

so that |S2/R| is homeomorphic to S2. For each W ∈ AR(S2, id), the
map o∗ induces the bijective map between p′′−1

vect(W) and p−1
vect(W). The

first Chern classes of different E’s in p′′−1
vect(W) are different, and consist

of the set {
m + k0

∣∣ m ∈ Z
}
⊂ H2

(
|S2/R|,Q

)

for some k0 ∈ Q.

Theorem B. Assume that R is equal to one of

Zn × Z, odd n, 〈−an〉, even n/2

so that |S2/Rrot| and |S2/R| are homeomorphic to S2 and RP2, re-
spectively. For each W ∈ AR(S2, id), maps o∗, o∗1, o∗2 induce bijective

maps among p′′−1
vect(W), p′−1

vect(W), p−1
vect(W). The set p′′−1

vect(W) has two
elements, and the first Chern classes of two different E’s in p′−1

vect(W) are

same in H2
(
|S2/Rrot|,Q

)
.

These results seem similar to usual classification of nonequivariant
topological complex vector bundles over S2 and RP2 . And, since [6,
Theorem A, B] are pullback versions of these two when R is finite and
R acts effectively on S2, readers would feel comfortable with statements
of [6, Theorem A, B].

Readers might ask whether we could interpret [6, Theorem C] sim-
ilarly. To state one more result on this, we introduce the following
condition on the R-action on M :

A2. R acts freely on M except a union of submanifolds with codimen-
sion at least one.

If the R-action on M does not satisfy Condition A1. but only Condition
A2., then M/R can not deliver an orbifold structure because orbifold
is defined by freeness except codimension at least two. So, we relax
definition of orbifold, and define orbifold with corner in Section 5. In
Section 5, we prove that the map

o∗ : Vect(M/R) −→ VectR(M), [E] 7−→ [o∗E]

is a well-defined isomorphism where M/R delivers the orbifold with cor-
ner structure. Also in Section 5, we show that the action of a finite
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subgroup R of O(3) on S2 does not satisfy Condition A1. but Condition
A2. if and only if it is conjugate to one of

(1.2)

Dn×Z, odd n, 〈an,−b〉, odd n,
Dn×Z, even n, 〈an,−b〉, even n,
〈−an, b〉, odd n/2, n > 2, 〈−an, b〉, even n/2,
〈−an,−b〉, odd n/2, n > 2, 〈−an,−b〉, even n/2,
Zn × Z, even n, n > 2, 〈−an〉, odd n/2, n > 2,
〈T,−o0〉, T× Z,
O× Z, I× Z.

We observe that groups of (1.2) are finite groups appearing in [6, The-
orem C]. Then, we can obtain the following result whose pullback is [6,
Theorem C] when R is finite and R acts effectively on S2:

Theorem C. Assume that R is equal to one of (1.2). Then, |S2/R|
is homotopically trivial. For each W ∈ AR(S2, id), the map o∗ induces
a bijective map between p′′−1

vect(W) and p−1
vect(W). And, the set p′′−1

vect(W)
has only one element.

By Theorem A, B, C, we can also observe that three main theorems of
[6] classify three different types of equivariant vector bundles according
to the topology of the orbit space |S2/R|.

This paper is organized as follows. In Section 2, we prove Proposition
1.1. In Section 3, we deal with line orbibundles. In Section 4, we restrict
our discussion to M = S2, and prove Theorem A, B. In Section 5, we
define orbifold with corner, and prove Theorem C.

2. Pullback of vector orbibundle

In this section, we introduce defining families of the orbifold M/R and
orbibundles over it, and define the pullback of each vector orbibundle
over M/R through o. Also, we endow the pullback with an R-action so
that we prove Proposition 1.1. Let Σ̄ be the subset of M on which R
does not act freely, and let Σ be the set o(Σ̄).

First, we give local uniformizing systems for open sets of M/R. We
use notations of [9], [10]. Let dimRM = m1. For an arbitrary point x̄
in M, put x = o(x̄). Denote by dx the cardinality of o−1(x). For a suffi-
ciently small connected neighborhood Ux of x, let Ūx̄ be the connected
component containing x̄ in o−1(Ux) which has dx components. We call
the local uniformizing system {Ũ , Λ, ϕ} of U defined by

Ũ = Ūx̄, Λ = Rx̄, ϕ = o|Ūx̄
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the local uniformizing system of Ux at x̄ where
1. Ūx̄ is contained in a coordinate chart of M, and moreover Ūx̄ is

regarded as contained in Tx̄M ∼= Rm1 where the origin of Tx̄M
corresponds to x̄,

2. Rx̄ acts on Tx̄M as the isotropy representation, and o induces the
homeomorphism from Ūx̄/Rx̄ to U.

If we put
o−1(x) =

{
x̄i

∣∣∣ i = 1, · · · , dx

}
,

then the preimage o−1(Ux) is expressed as the following disjoint union

Ūx̄1 ∪ · · · ∪ Ūx̄dx
.

We denote by F the family{
{Ūx̄, Rx̄,o|Ūx̄

}
∣∣∣ x ∈ |M/R|, x̄ ∈ o−1(x), and

Ux is a sufficiently small connected neighborhood of x
}

which is a defining family for M/R.
Second, we describe local uniformizing systems of an arbitrary or-

bibundle p : E → M/R in Vect(M/R). For an open set U ⊂ |M/R|,
denote by E|U the orbibundle E restricted to U. Let the fiber of E
be Cm2 for some natural number m2. For each local uniformizing sys-
tem {Ũ ,Λ, ϕ} ∈ F of a sufficiently small connected neighborhood Ux of
x ∈ |M/R|, the local uniformizing system {Ũ∗,Λ∗, ϕ∗} of E|U is given
by

Ũ∗ = Ũ × Cm2 , Λ∗ = Λ, ϕ∗ : Ũ∗ → ∣∣E|U
∣∣

for some ϕ∗ satisfying

1. p
(
ϕ∗(x̃, v)

)
= ϕ(x̃) for each x̃ ∈ Ũ and u ∈ Cm2 ,

2. ϕ∗ induces the homeomorphism from Ũ∗/Λ∗ to
∣∣E|U

∣∣.
We denote by F∗ the family of these systems which is a defining family
for E. For sufficiently small connected neighborhoods Ux ⊂ U ′

x of x ∈
|M/R| and an injection λ : {Ũ , Λ, ϕ} → {Ũ ′,Λ′, ϕ′} between their local
uniformizing systems, the injection

λ∗ : {Ũ∗, Λ∗, ϕ∗} → {Ũ ′∗, Λ′∗, ϕ′∗}
satisfies

ϕ∗ = ϕ′∗ ◦ λ∗ and λ∗(x̃, v) =
(

λ(x̃), gλ(x̃)v
)

for x̃ ∈ Ũ , u ∈ Cm2 , and some transition map gλ : Ũ → GL(m2,C).



Classification of vector orbibundles 575

Now, we state a basic lemma:

Lemma 2.1. For any orbibundle p : E → M/R in Vect(M/R), its
pullback o∗E uniquely exists which satisfies the following commutative
diagram:

(2.1)

o∗E ō−−−−→ E

p∗
y

yp

M
o−−−−→ M/R

where ō is an orbibundle map.

Proof. We show that o is a good map to obtain a proof. For good
map, see [4, p. 5]. Let U and Ū be open covers of |M/R| and M defined
by {

Ux | x ∈ |M/R|
}

and {Ūx̄ | x̄ ∈ M},
respectively. When Ux = o(Ūx̄) ∈ U, put õ : Ūx̄ → Ūx̄, x̃ 7→ x̃ be the
lifting of o. Then, we can check that o is a good map. So, we obtain a
proof of the lemma.

For reader’s convenience, we explain for the definition of o∗E. For
sufficiently small connected neighborhoods Ux ⊂ U ′

x of each x ∈ |M/R|
and their local uniformizing systems {Ũ , Λ, ϕ}, {Ũ ′,Λ′, ϕ′} ∈ F such that
Ũ ⊂ Ũ ′ ⊂ M, the trivializations Ũ × Cm2 , Ũ ′ × Cm2 and the transition
map gλ : Ũ → GL(m2,C) define the pullback o∗E. And, define ō to
satisfy ō|Ũ∗ = ϕ∗.

Remark 2.2. The pullback of an orbibundle through a smooth map
between orbifolds need not exist as noted in [4, p. 4].

Next, we state a key lemma.

Lemma 2.3. The map

o∗ : Vect(M/R) → VectR(M), [E] 7−→ [o∗E]

is isomorphic.

Proof. We use notations of Lemma 2.1. We will show that the pull-
back o∗E of E in Vect(M/R) carries the unique R-bundle structure up
to isomorphism to satisfy

(
o∗E

)
/R ∼= E.
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The bundle o∗E satisfies the diagram (2.1). It is well-known that the
pullback o∗E

∣∣
M\Σ̄ carries the unique R-bundle structure to satisfy

(2.2) ō(r · u) = ō(u)

for r ∈ R, u ∈ o∗E
∣∣
M\Σ̄ which satisfies

(2.3)
(
o∗E

∣∣
M\Σ̄

)/
R ∼= E

∣∣
o(M\Σ̄)

.

For a sufficiently small connected neighborhood Ux of x ∈ |M/R|, put

o−1(x) =
{
x̄i

∣∣i = 1, · · · , dx

}
and o−1(Ux) = Ūx̄1 ∪ · · · ∪ Ūx̄dx

.

First, we give an R-action on o∗E
∣∣
o−1(Ux)

. Pick an arbitrary point x̃ ∈
o−1(Ux) and an element r of R. Put x̃ ∈ Ūx̄i and r · x̃ ∈ Ūx̄i′ for some i,
i′. We will define r · (x̃, u) for arbitrary u ∈ Cm2 . For these i, i′, r, define
the injection

λi,i′,r : Ūx̄i → Ūx̄i′ , ỹ 7→ r · ỹ
for ỹ ∈ Ūx̄i . By using this, define r · (x̃, u) as

λ∗i,i′,r(x̃, u).

Note that if x̃ ∈ M \ Σ̄, then

(*) ō
(
λ∗i,i′,r(x̃, u)

)
= ō(x̃, u).

If we restrict so defined action to o∗E
∣∣
o−1(Ux\Σ)

, then (*) means that it
is equal to the R-action on o∗E

∣∣
o−1(Ux\Σ)

defined by (2.2). So, the action
is actually an action and is uniquely defined because Σ̄ is codimension at
least two. That is, the R-action on o∗E

∣∣
M\Σ̄ can be extended uniquely

to the whole o∗E. Therefore, we obtain a proof.

In a similar way, we can obtain similar results for o1, o2 instead of o,
so we obtain Proposition 1.1.

3. Line orbibundles over M/R

In this section, we deal with line orbibundle. For this, we intro-
duce some terminologies. Pick an arbitrary point x ∈ |M/R|, and a
point x̄ ∈ o−1(x). We call Rx̄ the structure group of M/R at x̄, and
call the isotropy Rx̄-representation on the tangent space Tx̄M the struc-
ture representation of M/R at x̄. Similarly, we call the isotropy Rx̄-
representation (o∗E

)
x̄

the structure representation of E at x̄. In this
section, we assume that the R-action satisfies the following condition:
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A3. R acts freely on M except finite set Σ̄.

Two orbibundles E, E′ over M/R are called isomorphic over Σ if their
structure representations at s̄ are Rs̄-isomorphic for each s̄ ∈ Σ̄. We
denote by Vect1(M/R) and Vect1

(
|M/R|

)
subsets of rank 1 elements

of Vect(M/R) and Vect
(
|M/R|

)
, respectively.

Lemma 3.1. If two line orbibundles L, L′ in Vect1(M/R) are isomor-
phic over Σ, then L′ is isomorphic to L⊗L0 for some (usual) line bundle
L0 in Vect1(|M/R|).

Proof. Since L and L′ are isomorphic over Σ, we can observe that
HomC(L,L′) is an line orbibundle over M/R. Also, observe that the
structure representation of HomC(L,L′) at each s̄ ∈ Σ̄ is the trivial
representation. So, HomC(L,L′) becomes a usual vector bundle over
|M/R|. And, the map

L⊗HomC(L,L′) → L′, u⊗ f 7→ f(u)

is a well-defined isomorphism. Therefore, we obtain a proof if we put
L0 = HomC(L,L′).

When M = S2, the terminology ‘isomorphic over Σ’ can be described
in terms of pvect.

Lemma 3.2. Assume that R is a finite group appearing in (1.1). Two
orbibundles E, E′ in Vect(S2/R) are isomorphic over Σ if and only if

pvect

(
o∗(E)

)
= pvect

(
o∗(E′)

)
.

Proof. We can check that a point x̄ in S2 with nontrivial Rx̄ is in the
same orbit with some di or S, N by definition of pvect, [6, Table 1.1],
[6, Table 3.4], and that all structure representations of E and E′ are
determined by structure representations at these points.

The dimension of an element W ∈ AR(S2, id) is defined as d if its en-
tries are all d-dimensional. For one-dimensional W, if we apply Lemma
3.2 to Lemma 3.1, we can obtain more precise result.

Proposition 3.3. Assume that R is a finite group appearing in (1.1).
For each one-dimensional W ∈ AR(S2, id) and some L0 in p′′−1

vect(W), the
map

Vect1(|S2/R|) −→ p′′−1
vect(W) ⊂ Vect1(S2/R), L 7→ L0 ⊗ L

is bijective.



578 Min Kyu Kim

Proof. We obtain surjectivity of the map by Lemma 3.1, 3.2. Since

c1(L⊗ L0) = c1(L) + c1(L0),

we obtain injectivity.

4. Orbibundles over S2/R

In this section, we deal with M = S2, and prove Theorem A, B. First,
we list all possible finite group actions on S2 which satisfies Condition
A1.

Lemma 4.1. The action of a finite subgroup R of O(3) on S2 satisfies
Condition A1. if and only if R is conjugate to one of (1.1).

Proof. In [6, Table 1.1], we have listed all closed subgroups R of
O(3) up to conjugacy. In [6, Table 3.4], isotropy subgroups of each R
in [6, Table 1.1] are calculated. If an isotropy subgroup Rx̄ does not
preserve orientation of Tx̄S2 for some x̄ ∈ S2, then R-action does not
satisfy Condition A1. Those of (1.1) are finite R’s in [6, Table 1.1] whose
isotropy subgroup Rx̄ preserves an orientation of Tx̄S2 for each x̄. And,
it is easy that these satisfy Condition A1.

Now, we prove Theorem A.

Proof of Theorem A. By bijectivity of o∗ and definition of p′′vect, we
obtain the first statement. By [6, Theorem A], the first Chern classes of
different bundles in p−1

vect(W) are all different, and consist of the set
{
|R|m + k′0

∣∣ m ∈ Z
}
⊂ H2(S2,Z)

for some k′0 ∈ Z. Since o∗c1(E) = c1

(
o∗E

)
for E ∈ Vect(S2/R) and the

degree of the map

o∗ : H2
(
|S2/R|,Q

)
→ H2(S2,Q)

is equal to |R| up to sign, we obtain the second statement.

Next, we prove Theorem B.

Proof of Theorem B. The first statement is easy. Before we prove
the second statement, we deal with one-dimensional W. By bijectiv-
ity of o∗2 and definition of p′vect and p′′vect, two elements L1 and L2 of
p′−1
vect(W) are expressed as o∗2L

′
1 and o∗2L

′
2 for two elements L′1 and L′2
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of p′′−1
vect(W), respectively. By Proposition 3.3, L′2 ∼= L′1 ⊗ L0 for some

L0 ∈ Vect(|M/R|). So, L2
∼= o∗2L

′
1⊗ o∗2L0 by Proposition 3.3. From this,

c1(L2) = c1(o∗2L
′
1 ⊗ o∗2L0) = c1(o∗2L

′
1) + c1(o∗2L0) = c1(L1)

because o∗2 : H2(|S2/R|,Z) → H2(|S2/Rrot|,Z) is trivial. So, we obtain
a proof for one-dimensional W.

For m2-dimensional W, we can show that two elements of p′−1
vect(W)

is expressed as E ⊕ L1 and E ⊕ L2 for some rank (m2 − 1) bundle E
and line orbibundles L1 and L2 by [6, Theorem B, D]. Since p′−1

vect(L1) =
p′−1
vect(L2), we have c1(L1) = c1(L2) by the above arguments. So, we have

c1(E ⊕ L1) = c1(E ⊕ L2).

5. Orbifold with corner

We define orbifold with corner by admitting a local uniformizing sys-
tem {Ũ ,Λ, ϕ} such that Λ acts freely on Ũ except a finite union of
submanifolds of Ũ with codimension at least “one.” If an orbifold with
corner is also an orbifold, then we call it just an orbifold. To deal with
orbifold with corner, we prove a basic lemma which holds for orbifold
by [9, Lemma 1].

Lemma 5.1. Let λ, µ : {Ũ , Λ, ϕ} → {Ũ ′,Λ′, ϕ′} be two injections for
two local uniformizing systems of two open sets of the underlying topo-
logical space of an orbifold with corner. Then there exists the uniquely
determined σ′ ∈ Λ′ such that µ = σ′ ◦ λ.

Proof. Let S be the subset of points x̃ ∈ Ũ with nontrivial Λx̃. Pick a
point x̃0 ∈ S such that V ∩S is a nonempty codimension one submanifold
in V for some sufficiently small connected neighborhood V of x̃0. Pick
a nontrivial b ∈ Λx̃0 fixing S so that b is orientation reversing. For each
orientation preserving element a ∈ Λx̃0 , since

aba−1a(s) = a(s)

for each s ∈ V ∩ S, the element a preserve S. If we denote by Λ0
x̃0

the
subgroup of orientation preserving elements in Λx̃0 , then we can assume
that V \ S has two components V1, V2 so that V is Λx̃0-invariant and
V1, V2 are Λ0

x̃0
-invariant. And, restrictions of λ and µ to V, V1, V2 give

injections. By [9, Lemma 1],

(5.1) µ = σ′1 ◦ λ on V1,
µ = σ′2 ◦ λ on V2
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for some σ1, σ2 ∈ Λ′. It suffices to show σ′1 = σ′2 to prove the lemma.
So, assume that σ′1 6= σ′2. By continuity of µ,

σ′1 ◦ λ = σ′2 ◦ λ on V ∩ S,

i.e.
(σ′−1

2 σ′1) ◦ λ = λ on V ∩ S.

So, σ′−1
2 σ′1 fixes λ(V ∩ S), and we have(

σ′−1
2 σ′1λ(V1)

)
∩ λ(V2) 6= ∅

because σ′−1
2 σ′1 is nontrivial. But, (5.1) gives(

σ′−1
2 σ′1λ(V1)

)
∩ λ(V2) = ∅

so that we obtain a contradiction. Therefore, σ′1 = σ′2 and we obtain a
proof.

By using this lemma, we can generalize basic lemmas on orbifold
to orbifold with corner. Orbibundle over orbifold with corner is also
defined. And, we can obtain the following isomorphism which is a slight
generalization of Proposition 1.1:

Proposition 5.2. Assume that the R-action on M satisfies Condi-
tion E2. Then, the map

o∗ : Vect(M/R) −→ VectR(M), [E] 7−→ [o∗E]

is isomorphic.

Proof. Similarly to Lemma 2.1, we can prove that the pullback bundle
uniquely exists. Since M is a smooth manifold, it is easy.

Next, we endow each o∗E with the unique R-action. Let Σ̄ be the
closure of the union of codimension one submanifolds of M on which
R does not act freely, and let Σ be the set o(Σ̄). By Lemma 2.3, each
pullback bundle o∗E delivers the R-action on o∗E|M\Σ̄ to satisfy (2.2)
and (2.3). For a sufficiently small neighborhood V of an arbitrary point
x̄ in Σ̄, we can define an R-action on o∗E|V as in the proof of Lemma
2.3 which is equal to the action on o∗E|M\Σ̄. By continuity, the action
on o∗E|V is unique, and we obtain the R-action on the whole o∗E.

Last, we prove Theorem C.

Proof of Theorem C. For each R, we can check case by case that
|S2/R| is homotopically trivial by [6, Table 1.1] and [6, Table 3.4]. By
bijectivity of o∗ and definition of p′′vect, the second statement is easy. The
third statement is obtained by [6, Theorem C].
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