ON HS-ALGEBRAS

Kyung Ho Kim*

Abstract

In this paper, we considered the congruence relation, isomorphism and obtained some properties of HS-algebras.

1. Introduction

The concept of Hilbert algebra was introduced in early 50 -ties by L. Henkin and T. Skolem for some investigations of implication in intuitionistic and other classical logics. In 60-ties, these algebras were studied especially, by A. Horn and A. Diego [3] from algebraic point of view. Recently, the Hilbert algebras were treated by D. Buseneag [1, 2]. The present author introduced the notion of HS-algebra [4]. In this paper, we considered the congruence relation, isomorphism and obtained some properties of HS-algebras.

2. Preliminaries

A Hilbert algebra is a triple $(X, *, 1)$, where X is a nonempty set, "*" is a binary operation on $X, 1 \in X$ is an element such that the following three axioms are satisfied for every $x, y, z \in X$:
(H1) $x *(y * x)=1$,
(H2) $(x *(y * z)) *((x * y) *(x * z))=1$,
(H3) if $x * y=y * x=1$ then $x=y$.
If X is a Hilbert algebra, then the relation $x \leq y$ if and only if $x * y=1$ is a partial order on X, which will be called the natural ordering on X. With respect to this ordering, 1 is the largest element of X.

[^0]In a Hilbert algebra X, the following properties hold([3]).
(H4) $x * x=1$ for all $x \in X$,
(H5) $x * 1=1$ for all $x \in X$,
(H6) $x *(y * z)=(x * y) *(x * z)$ for all $x, y z \in X$,
(H7) $1 * x=x$ for all $x \in X$,
(H8) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$.
(H9) $x *((x * y) * y))=1$
(H10) $x \leq y$ implies $z * x \leq z * y$ and $y * z \leq x * z$ for all $x, y, z \in X$.

3. HS-algebras

Definition 3.1. By an HS-algebra $(X, \cdot, *)$ with two binary operations "." and "*" that satisfies the following axioms:
(HS1) $S(X)=(X, \cdot)$ is a semigroup,
(HS2) $H(X)=(X, *, 1)$ is a Hilbert algebra,
(HS3) $x \cdot(y * z)=x \cdot y * x \cdot z$ and $(x * y) \cdot z=x \cdot z * y \cdot z$ for any $x, y, z \in X$.
For convenience, we use the multiplication $x \cdot y$ by $x y . X$ is a multiplicatively abelian HS-algebra if $S(X)=(X, \cdot)$ is abelian.

Example 3.2 [4]. Let $X=\{1, a, b, c\}$ in which "*" and "." are defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	a	1	c
c	1	a	b	1

\cdot	1	a	b	c
1	1	1	1	1
a	1	a	1	a
b	1	1	b	b
c	1	a	b	c

It is easy to check that $(X, \cdot, *)$ is an HS-algebra.

Example 3.3 [4]. Let $X=\{1, a, b, c\}$ in which "*" and "." are defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	1	1	c
c	1	1	1	1

\cdot	1	a	b	c
1	1	1	1	1
a	1	a	1	1
b	1	1	b	c
c	1	1	c	b

It is easy to check that $(X, \cdot, *)$ is an HS-algebra.

Example 3.4 [4]. Let $X=\{1, a, b, c\}$ in which "*" and "." are defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	b
b	1	a	1	a
c	1	1	1	1

\cdot	1	a	b	c
1	1	1	1	1
a	1	a	1	a
b	1	1	b	b
c	1	a	b	c

It is easy to check that $(X, \cdot, *)$ is an HS-algebra.
For any x, y in an HS-algebra X, we define $x \vee y$ as $(y * x) * x$. Note that $x \vee y$ is an upper bound of x and y.

Definition 3.5. An HS-algebra is said to be commutative if for all $x, y \in$ X,

$$
(y * x) * x=(x * y) * y, \text { i.e., } x \vee y=y \vee x
$$

Lemma 3.6 [4]. Let X be an HS-algebra. Then the following identities hold.
(1) $x 1=1$ and $1 x=1$ for all $x \in X$,
(2) $x \leq y$ implies $a x \leq a y$ and $x a \leq y a$ for all $x, y, a \in X$,
(3) $x(y \vee z)=x z \vee y z$ for all $x, y, z \in X$.

Definition 3.7 [4]. Let X and X^{\prime} be HS-algebras. A mapping $f: X \rightarrow$ X^{\prime} is called an HS-algebra homomorphism (briefly, homomorphism) if $f(x * y)=f(x) * f(y)$ and $f(x y)=f(x) f(y)$ for all $x, y \in X$.

4. Congruence relation and isomorphism theorem

In what follows, let X denote an HS-algebra unless otherwise specified.

Definition 4.1. Let X be an HS-algebra and let ρ be a binary relation on X. Then
(1) ρ is said to be right (resp. left) compatible if $(x, y) \in \rho$ implies, $(x * z, y * z) \in \rho($ resp. $(z * x, z * y) \in \rho)$ and $(x z, y z) \in \rho$ (resp. $(z x, z y) \in \rho)$ for all $x, y, z \in X$;
(2) ρ is said to be compatible if $(x, y) \in \rho$ and $(u, v) \in \rho$ imply $(x * u, y * v) \in \rho$ and $(x u, y v) \in \rho$ for all $x, y, u, v \in X ;$
(3) A compatible equivalence relation is called a congruence relation.

Using the notion of left (resp. right) compatible relation, we give a characterization of a congruence relation.

Theorem 4.2. Let X be an HS-algebra. Then an equivalence relation ρ on X is congruence if and only if it is both left and right compatible.

Proof. Assume that ρ is a congruence relation on X. Let $x, y \in X$ be such that $(x, y) \in \rho$. Note that $(z, z) \in \rho$ for all $z \in X$ because ρ is reflexive. It follows from a congruence relation that $(x * z, y * z) \in \rho$ and $(x z, y z) \in \rho$. Hence ρ is right compatible. Similarly, ρ is left compatible.

Conversely, suppose that ρ is both left and right compatible. Let $x, y, u, v \in X$ be such that $(x, y) \in \rho$ and $(u, v) \in \rho$. Then $(x * u, y * u) \in \rho$ and $(x u, y u) \in \rho$. by the right compatibility. Using the left compatibility of ρ, we have $(y * u, y * v) \in \rho$ and $(y u, y v) \in \rho$. It follows from the transitivity of ρ that $(x * u, y * v) \in \rho$ and $(x u, y v) \in \rho$. Hence ρ is congruence.

For an equivalence relation ρ on an HS-algebra X, we denote

$$
x_{\rho}:=\{y \in X \mid(x, y) \in \rho\} \text { and } X / \rho:=\left\{x_{\rho} \mid x \in X\right\} .
$$

Theorem 4.3. Let ρ be a congruence relation on a HS-algebra X. If X is commutative, X / ρ is a HS-algebra under the operations

$$
x_{\rho} * y_{\rho}=(x * y)_{\rho} \text { and }\left(x_{\rho}\right)\left(y_{\rho}\right)=(x y)_{\rho}
$$

for all $x_{\rho}, y_{\rho} \in X / \rho$.
Proof. Since ρ is a congruence relation, the operations are well-defined. Clearly, $(X / \rho, *)$ is a Hilbert-algebra and $(X / \rho, \cdot)$ is a semigroup. For every $x_{\rho}, y_{\rho}, z_{\rho} \in X / \rho$, we have

$$
\begin{aligned}
x_{\rho}\left(y_{\rho} * z_{\rho}\right) & =x_{\rho}(y * z)_{\rho}=(x(y * z))_{\rho} \\
& =(x y * x z)_{\rho}=(x y)_{\rho} *(x z)_{\rho} \\
& =x_{\rho} y_{\rho} * x_{\rho} z_{\rho}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(x_{\rho} * y_{\rho}\right) z_{\rho} & =(x * y)_{\rho} z_{\rho}=((x * y) z)_{\rho} \\
& =(x z * y z)_{\rho}=(x z)_{\rho} *(y z)_{\rho} \\
& =x_{\rho} z_{\rho} * y_{\rho} z_{\rho} .
\end{aligned}
$$

Thus X / ρ is an HS-algebra.
Theorem 4.4. Let ρ be a congruence relation on an HS-algebra X. If X is commutative, the mapping $\rho^{\star}: X \rightarrow X / \rho$ defined by $\rho^{\star}(x)=x_{\rho}$ for all $x \in X$ is an HS-algebra homomorphism.

Proof. Let $x, y \in X$. Then $\rho^{\star}(x * y)=(x * y)_{\rho}=x_{\rho} * y_{\rho}=\rho^{\star}(x) * \rho^{\star}(y)$, and $\rho^{\star}(x y)=(x y)_{\rho}=\left(x_{\rho}\right)\left(y_{\rho}\right)=\rho^{\star}(x) \rho^{\star}(y)$. Hence ρ^{\star} is an HS-algebra homomorphism.

It is clear that ρ^{\star} is clearly surjective.
Theorem 4.5. Let X and X^{\prime} be commutative $H S$-algebras and let $f: X \rightarrow X^{\prime}$ be an HS-algebra homomorphism. Then the set

$$
K_{f}:=\{(x, y) \in X \times X \mid f(x)=f(y)\}
$$

is a congruence relation on X and there exists a unique 1-1 HS-algebra homomorphism $\bar{f}: X / K_{f} \rightarrow X^{\prime}$ such that $\bar{f} \circ K_{f}^{\star}=f$, where $K_{f}^{\star}: X \rightarrow$ X / K_{f}. That is, the following diagram commute:

Proof. It is clear that K_{f} is an equivalence relation on X. Let $x, y, u, v \in X$ be such that $(x, y),(u, v) \in K_{f}$. Then $f(x)=f(y)$ and $f(u)=f(v)$, which imply that

$$
f(x * u)=f(x) * f(u)=f(y) * f(v)=f(y * v)
$$

and

$$
f(x u)=f(x) f(u)=f(y) f(v)=f(y v) .
$$

It follows that $(x * u, y * v) \in K_{f}$ and $(x u, y v) \in K_{f}$. Hence K_{f} is a congruence relation on X. Let $\bar{f}: X / K_{f} \rightarrow X^{\prime}$ be a map defined by $\bar{f}\left(x K_{f}\right)=f(x)$ for all $x \in X$. It is clear that \bar{f} is well-defined. For any $x K_{f}, y K_{f} \in X / K_{f}$, we have

$$
\begin{aligned}
\bar{f}\left(x K_{f} * y K_{f}\right) & =\bar{f}\left((x * y) K_{f}\right)=f(x * y) \\
& =f(x) * f(y)=\bar{f}\left(x K_{f}\right) * \bar{f}\left(y K_{f}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{f}\left(\left(x K_{f}\right)\left(y K_{f}\right)\right) & =\bar{f}\left((x y) K_{f}\right)=f(x y) \\
& =f(x) f(y)=\bar{f}\left(x K_{f}\right) \bar{f}\left(y K_{f}\right) .
\end{aligned}
$$

If $\bar{f}\left(x K_{f}\right)=\bar{f}\left(y K_{f}\right)$, then $f(x)=f(y)$ and so $(x, y) \in K_{f}$, that is, $x K_{f}=y K_{f}$. Thus \bar{f} is a 1-1 HS-algebra homomorphism. Now let g be an HS-algebra homomorphism from X / K_{f} to X^{\prime} such that $g \circ K_{f}^{\star}=f$. Then

$$
g\left(x K_{f}\right)=g\left(K_{f}^{\star}(x)\right)=f(x)=\bar{f}\left(x K_{f}\right)
$$

for all $x K_{f} \in X / K_{f}$. It follows that $g=\bar{f}$ so that \bar{f} is unique. This completes the proof.

Corollary 4.6. Let ρ and σ be congruence relations on an HSalgebra X such that $\rho \subseteq \sigma$. If X is commutative, the set

$$
\sigma / \rho:=\left\{\left(x_{\rho}, y_{\rho}\right) \in X / \rho \times X / \rho \mid(x, y) \in \sigma\right\}
$$

is a congruence relation on X / ρ and there exists a 1-1 and onto HSalgebra homomorphism from $\frac{X / \rho}{\sigma / \rho}$ to X / σ.

Proof. Let $g: X / \rho \rightarrow X / \sigma$ be a function defined by $g\left(x_{\rho}\right)=x_{\sigma}$ for all $x_{\rho} \in X / \rho$. Since $\rho \subseteq \sigma$, it follows that g is a well-defined onto HSalgebra homomorphism. According to Theorem 4.5, it is sufficient to show that $K_{g}=\sigma / \rho$. Let $\left(x_{\rho}, y_{\rho}\right) \in K_{g}$. Then $x_{\sigma}=g\left(x_{\rho}\right)=g\left(y_{\rho}\right)=y_{\sigma}$ and so $(x, y) \in \sigma$. Hence $\left(x_{\rho}, y_{\rho}\right) \in \sigma / \rho$, and thus $K_{g} \subseteq \sigma / \rho$.

Conversely, if $\left(x_{\rho}, y_{\rho}\right) \in \sigma / \rho$, then $(x, y) \in \sigma$ and so $x_{\sigma}=y_{\sigma}$. It follows that

$$
g\left(x_{\rho}\right)=x \sigma=y \sigma=g\left(y_{\rho}\right)
$$

so that $\left(x_{\rho}, y_{\rho}\right) \in K_{g}$. Hence $K_{g}=\sigma / \rho$, and the proof is complete.
Definition 4.7. Let X be an HS-algebra. A subalgebra I of $(X, *)$ is called a left ideal of X if $X I \subseteq I$, a right ideal if $I X \subseteq I$, and an (two-sided) ideal if it is both a left and right ideal.

Theorem 4.8. Let I be an ideal of an HS-algebra X. Then $\rho_{I}:=$ $(I \times I) \cup \Delta_{X}$ is a congruence relation on X, where $\Delta_{X}:=\{(x, x) \mid x \in X\}$.

Proof. Clearly, ρ_{I} is reflexive and symmetric. Noticing that $(x, y) \in$ ρ_{I} if and only if $x, y \in I$ or $x=y$, we know that if $(x, y) \in \rho_{I}$ and $(y, z) \in \rho_{I}$ then $(x, z) \in \rho_{I}$. Hence ρ_{I} is an equivalence relation on X. Assume that $(x, y) \in \rho_{I}$ and $(u, v) \in \rho_{I}$. Then we have the following four cases: (i) $x, y \in I$ and $u, v \in I$; (ii) $x, y \in I$ and $u=v$; (iii) $x=y$ and $u, v \in I$; and (iv) $x=y$ and $u=v$. In either case, we get $x * u=y * v$ or $(x * u, y * v) \in I \times I$, and $x u=y v$ or $(x u, y v) \in I \times I$. Therefore ρ_{I} is a congruence relation on X.

Let X be a multiplicatively abelian HS-algebra and ρ_{X} be a binary relation on X defined by

$$
(a, b) \in \rho_{X} \Longleftrightarrow \exists u \in X \text { such that } a u=b u
$$

Clearly, ρ_{X} is reflexive and symmetric. Let $(a, b),(b, c) \in \rho_{X}$. Then there exist $u, v \in X$ such that $a u=b u$ and $b v=c v$. These imply $a(b u v)=(a u)(b v)=(b u)(c v)=c(b u v)$, whence ρ_{X} is transitive. Thus ρ_{X} is an equivalence relation on X.

Theorem 4.9. Let X be a multiplicatively abelian HS-algebra and ρ_{X} be a binary relation on X defined by (\bullet). If X is commutative, ρ_{X} is a congruence relation on X, and X / ρ_{X} is a multiplicatively abelian HS-algebra.

Proof. Let $(a, b),(c, d) \in \rho_{X}$, Then there exist $u, v \in X$ such that $a u=b u$ and $c v=d v$. These imply $(a c)(u v)=(a u)(c v)=(b u)(d v)=$ $(b d)(u v)$ and $(a * c)(u v)=a u v * c u v=b u v * d u v=(b * d) u v$. Hence $(a c, b d) \in \rho_{X}$ and $(a * c, b * d) \in \rho_{X}$. Thus ρ_{X} is a congruence relation on X, and clearly X / ρ_{X} is a multiplicatively abelian HS-algebra.

Let X be a multiplicatively abelian HS-algebra. If X is commutative, a map $\left(\rho_{X}\right)^{\star}: X \rightarrow X / \rho_{X}$ defined by

$$
\left(\rho_{X}\right)^{\star}(a)=a \rho_{X}
$$

is a surjective HS-algebra homomorphism.
Theorem 4.10. Let X and X^{\prime} be multiplicatively abelian $H S$-algebras with X / ρ_{X} and $X^{\prime} / \rho_{X}^{\prime}$, respectively and $\phi: X \rightarrow X^{\prime}$ be an HS-algebra homomorphism. If X and X^{\prime} are commutative, there exists a unique homomorphism $\phi / \rho: X / \rho_{X} \rightarrow X^{\prime} / \rho_{X^{\prime}}$ such that $\phi / \rho \circ\left(\rho_{X}\right)^{\star}=\left(\rho_{X^{\prime}}\right)^{\star} \circ \phi$.

Proof. Define $\phi / \rho: X / \rho_{X} \rightarrow X^{\prime} / \rho_{X^{\prime}}$ by $\phi / \rho\left(a \rho_{X}\right)=\phi(a) \rho_{X^{\prime}}$. If $a \rho_{X}=b \rho_{X}$, then there exists $u \in X$ such that $a u=b u$. Thus $\phi(a) \phi(u)=$ $\phi(b) \phi(u)$ and $(\phi(a), \phi(b)) \in \rho_{X^{\prime}}$, so $\phi(a) \rho_{X^{\prime}}=\phi(b) \rho_{X^{\prime}}$. Therefore ϕ / ρ is well-defined. Next, we prove that ϕ / ρ is a homomorphism. In fact, $\phi / \rho\left(a \rho_{X} * b \rho_{X}\right)=\phi / \rho\left((a * b) \rho_{X}\right)=\phi(a * b) \rho_{X^{\prime}}=(\phi(a) * \phi(b)) \rho_{X^{\prime}}=$ $\phi(a) \rho_{X^{\prime}} * \phi(b) \rho_{X^{\prime}}=\phi / \rho\left(a \rho_{X}\right) * \phi / \rho\left(b \rho_{X}\right)$ and $\phi / \rho\left(a \rho_{X} \cdot b \rho_{X}\right)=\phi / \rho\left((a b) \rho_{X}\right)=$ $\phi(a b) \rho_{X^{\prime}}=(\phi(a) \cdot \phi(b)) \rho_{X^{\prime}}=\phi(a) \rho_{X^{\prime}} \cdot \phi(b) \rho_{X^{\prime}}=\phi / \rho\left(a \rho_{X}\right) \cdot \phi / \rho\left(b \rho_{X}\right)$. For any $a \in X$, we have $\left(\phi / \rho \circ\left(\rho_{X}\right)^{\star}\right)(a)=\phi / \rho\left(\left(\rho_{X}\right)^{\star}(a)\right)=\phi / \rho\left(a \rho_{X}\right)=$ $\phi(a) \rho_{X^{\prime}}=\left(\rho_{X^{\prime}}\right)^{\star}(\phi(a))=\left(\left(\rho_{X^{\prime}}\right)^{\star} \circ \phi\right)(a)$. Thus $\phi / \rho \circ\left(\rho_{X}\right)^{\star}=\left(\rho_{X^{\prime}}\right)^{\star} \circ \phi$. Finally, if there exists a homomorphism $g: X / \rho_{X} \rightarrow X^{\prime} / \rho_{X^{\prime}}$ such that $g \circ\left(\rho_{X}\right)^{\star}=\left(\rho_{X^{\prime}}\right)^{\star} \circ \phi$, then $g\left(a \rho_{X}\right)=g\left(\left(\rho_{X}\right)^{\star}(a)\right)=\left(g \circ\left(\rho_{X}\right)^{\star}\right)(a)=$ $\left(\left(\rho_{X^{\prime}}\right)^{\star} \circ \phi\right)(a)=\left(\rho_{X^{\prime}}\right)^{\star}(\phi(a))=\phi(a) \rho_{X^{\prime}}=\phi / \rho\left(a \rho_{X}\right)$. Thus $g=\phi / \rho$ and ϕ / ρ is unique.

It is clear that $\operatorname{Hom}\left(X, X^{\prime}\right)$ is a semigroup under multiplication defined by $\left(\phi_{1} \cdot \phi_{2}\right)(a)=\phi_{1}(a) \cdot \phi_{2}(a)$. Likewise $\operatorname{Hom}\left(X / \rho_{X}, X^{\prime} / \rho_{X^{\prime}}\right)$ is a semigroup by Theorem 4.10, we can define a mapping

$$
\Phi: \operatorname{Hom}\left(X, X^{\prime}\right) \rightarrow \operatorname{Hom}\left(X / \rho_{X}, X^{\prime} / \rho_{X^{\prime}}\right)
$$

by $\Phi(\phi)=\phi / \rho$. Then we have the following theorem.

Theorem 4.11. Let X and X^{\prime} be multiplicatively abelian $H S$-algebras with X / ρ_{X} and $X^{\prime} / \rho_{X^{\prime}}$, respectively. If X and X^{\prime} are commutative, the above mapping Φ given by $\Phi(\phi)=\phi / \rho$ is a semigroup homomorphism.

Proof. Let $\phi_{1}, \phi_{2} \in \operatorname{Hom}\left(X, X^{\prime}\right)$ and $a \rho_{X} \in X / \rho_{X}$. Then $\left(\left(\phi_{1}\right.\right.$. $\left.\left.\phi_{2}\right) / \rho\right)\left(a \rho_{X}\right)=\left(\left(\phi_{1} \cdot \phi_{2}\right)(a)\right) \rho_{X^{\prime}}=\left(\phi_{1}(a) \cdot \phi_{2}(a)\right) \rho_{X^{\prime}}=\phi_{1}(a) \rho_{X^{\prime}}$. $\phi_{2}(a) \rho_{X^{\prime}}=\phi_{1} / \rho\left(a \rho_{X}\right) \cdot \phi_{2} / \rho\left(a \rho_{X}\right)=\left(\phi_{1} / \rho \cdot \phi_{2} / \rho\right)\left(a \rho_{X}\right)$. Consequently, $\left(\phi_{1} \cdot \phi_{2}\right) / \rho=\phi_{1} / \rho \cdot \phi_{2} / \rho$. Thus the map

$$
\Phi: \operatorname{Hom}\left(X, X^{\prime}\right) \rightarrow \operatorname{Hom}\left(X / \rho_{X}, X^{\prime} / \rho_{X^{\prime}}\right)
$$

given by $\Phi(\phi)=\phi / \rho$ is a semigroup homomorphism.

References

[1] D. Busneag, A note on deductive systems of a Hilbert algebras, Kobe J. Math. 2 (1985), 29-35.
[2] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math. 5 (1988), 161-172.
[3] A. Diego, Sur les algébras de Hilbert, Ed. Hermann, Colléction de Logique Math. Serie A 21 (1966), 1-52.
[4] S. M. Lee and K. H. Kim, A note on HS-algebras, International Mathematical Forum 6, (No.31), (2011), 1529-1534.
*
Department of Mathematics,
Chungju National University
Chungju 380-702, Republic of Korea
E-mail: ghkim@cjnu.ac.kr

[^0]: Received April 07, 20011; Revised June 01, 2011; Accepted August 25, 2011.
 2010 Mathematics Subject Classification: Primary 08A05, 08A30, 20 L05.
 Key words and phrases: Hilbert algebra, HS-algebra, right (resp. left) compatible, congruence.

 The research was supported by a grant from the Academic Research Program of Chungju National University in 2011.

