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PULL-BACK MORPHISMS, CONVOLUTION
PRODUCTS AND STEINBERG VARIETIES

Namhee Kwon*

Abstract. In this paper, we first show that the pull-back mor-
phism between two K-groups of the Steinberg varieties, obtained
respectively from partial flag varieties and quiver varieties of type
A, is a ring homomorphism with respect to the convolution prod-
uct. Then, we prove that this ring homomorphism yields a property
of compatibility between two certain convolution actions.

1. Introduction

Let M be a complex smooth variety, let N be any variety over C, and
let p : M −→ N be a proper morphism. Put

Z = M ×N M = {(m1,m2) ∈ M ×M | p (m1) = p (m2)} ,

and we set Mx = p−1 (x) for x ∈ N . Then according to the general set-
up of the convolution product in K-theory (see Section 2 for details), we
obtain the following important convolution products in representation
theory:

(1.1) K(Z)⊗K(Z) −→ K(Z),

(1.2) K(Z)⊗K (Mx) −→ K (Mx) .

We refer to [2, 3, 5] for the applications of (1.1) and (1.2) in the geometric
representation theory of Weyl groups, affine Hecke algebras and quantum
affine algebras.

In particular, in this paper we are interested in the convolution prod-
ucts (1.1) and (1.2) appeared in [3, 5], where we have the cases when
the variety M is a partial flag variety or a quiver variety. Though the
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author treated the general types of quiver varieties in [5], in our current
study we will restrict our attention to quiver varieties of type A because
certain relations have been known between quiver varieties of type A
and the geometry of partial flag varieties over the nilpotent cone [4].

We will use these relationships to construct a group homomorphism
between the Grothendieck groups of related Steinberg type varieties.
Here Steinberg type varieties mean the varieties Z in the above general
set-up for the cases when M is a partial flag variety or a quiver variety of
type A. In addition, we will show that this homomorphism is actually a
ring homomorphism with respect to the convolution products obtained
from (1.1). (See Theorem (5.2).) By using this ring homomorphism,
we will also present a commutative diagram which shows a property of
compatibility between two convolution actions arising from (1.2). (See
Corollary (5.3).)

2. Preliminaries

Pull-back in K-theory. Let X be a smooth algebraic variety over
C, and let K(X) be the Grothendieck group of all coherent sheaves on
X. Recall that the Grothendieck group K(X) also can be understood
as the Grothendieck group of algebraic vector bundles on X if X is
nonsingular.

Assume that Y is a closed subvariety of the smooth variety X, and
let K(X, Y ) be the relative Grothendieck group of the derived category
of complexes of algebraic vector bundles which are exact outside Y (see
[1]). Then there is a natural isomorphism between K(X,Y ) and K(Y ).

Suppose that f : Y −→ X is a morphism between smooth va-
rieties. Let X

′
and Y

′
be closed subvarieties of X and Y respec-

tively satisfying f−1
(
X
′
)
⊂ Y

′
. Then, we have a homomorphism

K
(
X, X

′
)
−→ K

(
Y, Y

′
)

induced by the pull-back E• 7−→ f∗E•, where
E• is a complex of algebraic vector bundle over X. From isomorphisms
K

(
X
′
)
' K

(
X, X

′
)

and K
(
Y
′
)
' K

(
Y, Y

′
)
, we finally obtain a

homomorphism f∗ : K
(
X
′
)
−→ K

(
Y
′
)
. We call this morphism the

pull-back with support (group) homomorphism. Notice that this depends
in an essential way on the ambient spaces.

Convolutions in K-theory. Let X be a smooth algebraic variety,
and let Z1 and Z2 be closed subsets of X.
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For given F1 ∈ K(Z1) and F2 ∈ K(Z2), we write F1 £ F2 ∈ K(Z1 ×
Z2) for the external tensor product p∗Z1

F1 ⊗OZ1×Z2
p∗Z2

F2 of F1 and F2.
Here pZ1 and pZ2 denote the projections of Z1 × Z2 to corresponding
factors. Next, let ∆ : X ↪→ X×X be the diagonal embedding. Then we
have ∆−1 (Z1 × Z2) = Z1 ∩ Z2. So the restriction map ∆ : Z1 ∩ Z2 −→
Z1 × Z2 induces the map

(2.1) ∆∗ : K (Z1 × Z2) −→ K (Z1 ∩ Z2) .

By combining the map (2.1) with the external tensor product, we obtain
the following tensor product with support:
(2.2)
⊗ : K (Z1)⊗K (Z2) −→ K (Z1 ∩ Z2) , (F1, F2) 7→ ∆∗ (F1 £ F2) .

With the morphism (2.2), we define the convolution product in the
algebraic K-theory as follows.

Let M1, M2 and M3 be smooth, quisi-projective varieties with the
(i, j)-projections pij : M1 × M2 × M3 −→ Mi × Mj . We suppose that
Z12 ⊂ M1 ×M2 and Z23 ⊂ M2 ×M3 are closed subsets.

We also assume that

(2.3) p13 :
(
p−1
12 (Z12) ∩ p−1

23 (Z23)
) −→ M1 ×M3

is a proper map.
Then we define the convolution product in K-theory

(2.4) ∗ : K(Z12)⊗K(Z23) −→ K(Z12 ◦ Z23)

to be F12∗F23 := (p13)∗ ((p12)
∗F12 ⊗ (p23)

∗F23). Here Z12◦Z23 denotes
the image of the map (2.3).

Concerned with the pull-back with support morphisms and the tensor
products, the following lemma is known [1].

Lemma 2.1. Let f : Y −→ X be a morphism between smooth vari-
eties. Assume that X

′
1, X

′
2 ⊂ X and Y

′
1 , Y

′
2 ⊂ Y are closed subvarieties

such that f−1
(
X
′
i

)
⊂ Y

′
i for i = 1, 2. Then, we have

f∗ (F1 ⊗F2) = f∗ (F1)⊗ f∗ (F2) for Fi ∈ K
(
X
′
i

)
.

3. Convolution actions on fibers, partial flag variety case

Given an integer d ≥ 1, let F be the set of all n-step partial flags in
Cd, i.e., the set of sequences of vector spaces

F =
{

F =
(
0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cd

)}
.
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Then F is a smooth compact manifold, and its connected components
are parametrized by partitions d = (d1, · · · , dn) ∈ (Z≥0)

n of the integer
d. In fact, the connected component of F corresponding to the partition
d is given by

Fd =
{

F =
(
0 = F0 ⊂ · · · ⊂ Fn = Cd

)
| dim (Fi/Fi−1) = di

}
.

Let N =
{
x ∈ End

(
Cd

) | xm = 0
}
, and let

M = {(x, F ) ∈ N × F | x (Fi) ⊂ Fi−1 for all i = 1, 2, · · · , n} .

Then, it is known that T ∗F ' M as vector bundles over F. Thus the
decomposition of F into connected components yields a decomposition
M = tMd, where Md ' T ∗Fd.

Let us now consider a natural projection µ : M −→ N . Define

Z = M ×N M = {(m1,m2) ∈ M ×M | µ (m1) = µ (m2)} .

Then we have Z ◦ Z = Z, and the convolution product

(3.1) ∗ : K(Z)⊗K(Z) −→ K(Z)

is well-defined.
Let Fx be the fiber µ−1(x). Then we also obtain the following con-

volution action on the fiber Fx due to the fact Z ◦ Fx = Fx:

(3.2) ∗ : K(Z)⊗K (Fx) −→ K (Fx) .

4. Convolution actions on fibers, quiver variety case

Let I = {1, 2, · · · , n− 1} be the set of vertices of the Dynkin dia-
gram of the simple Lie algebra sln (C). We also let V = (Vi)i∈I and
W = (Wi)i∈I be collections of finite-dimensional vector spaces. We
write v and w for (dimV1, · · · , dimVn−1) and (dimW1, · · · , dimWn−1)
respectively.

Define

M (v,w) =

(
n−2⊕

k=1

Hom (Vk, Vk+1)

)
⊕

(
n−2⊕

k=1

Hom (Vk+1, Vk)

)

⊕
(

n−1⊕

k=1

Hom (Wk, Vk)

)
⊕

(
n−1⊕

k=1

Hom (Vk,Wk)

)
.

We denote by (A = (Ak) , B = (Bk) , i = (ik) , j = (jk)) an element of
M (v,w).
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If g = (gk) ∈ Gv, then we define an action of Gv =
∏n−1

k=1 GL (Vk) on
M (v,w) as follows:

g·((Ak) , (Bk) , (ik) , (jk)) =
((

gk+1Akg
−1
k

)
,
(
gkBkg

−1
k+1

)
, (gkik) ,

(
jkg

−1
k

))
.

Next, we consider a subset µ (v,w) of M (v,w) consisting of quadru-
ples {(A,B, i, j)} subject to the conditions B1A1 = i1j1, BkAk = Ak−1

Bk−1 + ikjk for 2 ≤ k ≤ n − 2, and An−2Bn−2 + in−1jn−1 = 0. An
element (A, B, i, j) ∈ µ (v,w) is called stable if each subspace U =
(U1, · · · , Un−1) of V = (V1, · · · , Vn−1), which contains Im i (i.e., Im ik ⊂
Uk) and invariant under (Ak) and (Bk) (i.e., Ak (Uk) ⊂ Uk+1 and Bk (Uk+1)
⊂ Uk), is actually equal to V . We denote by µ (v,w)s the set of stable
elements in µ (v,w). We notice that µ (v,w) and µ (v,w)s are invari-
ant under the action of Gv. Thus we can consider the affine algebro-
geometric quotient M0 (v,w) = µ (v,w) //Gv and the geometric invari-
ant theory quotient M (v,w) = µ (v,w) //χGv. Here χ is the character
on Gv given by χ ((gk)) =

∏
k det

(
g−1
k

)
. Recall that there is a natural

projective morphism π : M (v,w) −→ M0 (v,w) which sends a Gv-orbit
Gv(A, B, i, j) to the unique closed orbit Gv(A0, B0, i0, j0) contained in
Gv(A, B, i, j).

Lemma 4.1. Let V
′
=

(
V
′
k

)
be a collection of subspaces of V = (Vk).

Then there is a natural inclusion map M0

(
v
′
,w

)
↪→ M0 (v,w) for a

fixed collection of spaces W = (Wk).

Proof. See [5, Lemma (2.5.3)].

By Lemma (4.1), we can consider the projective morphisms

π : M
(
vk,w

)
−→ M0

(
vk,w

)
(k = 1, 2)

as morphisms to M0

(
v1 + v2,w

)
. Thus we can define the following

Steinberg-type variety:

Z
(
v1,v2;w

)
=

{(
x1, x2

) ∈ M
(
v1,w

)×M
(
v2,w

) | π (
x1

)
= π

(
x2

)}
.

Notice that

Z
(
v1,v2;w

) ◦ Z
(
v2,v3;w

) ⊂ Z
(
v1,v3;w

)
.

Hence, if we let Z (w) = tv1,v2Z
(
v1,v2;w

)
, then we obtain the convo-

lution product

(4.1) ∗ : K (Z(w))⊗K (Z(w)) −→ K (Z(w)) .



432 Namhee Kwon

Let L (v,w) be a fiber π−1 (Gv(0, 0, 0, 0)) for the projection π :
M (v,w) −→ M0 (v,w), and let L (w) = tvL (v,w). Then we also
have the following convolution action:

(4.2) ∗ : K (Z(w))⊗K (L (w)) −→ K (L (w)) .

5. Compatibility between two convolution actions

We first review the relations between quiver varieties of type A and
the geometry of partial flag varieties over the nilpotent cone.

Let x ∈ N =
{
x ∈ End

(
Cd

) | xm = 0
}
, and let {x, y, h} be a sl2−triple

in End
(
Cd

)
. Then we define Sx = {u ∈ N | [u− x, y] = 0}. Since the

GL
(
Cd

)
-orbits on N are determined by partitions of d, we can denote

by Oλ the orbit corresponding to the partition λ of d.
Let M = td∈P (d)Md be the decomposition introduced in Section 3,

and let µd : Md −→ N be the restriction of the map µ : M −→ N . Let
ρ = (ρ1 ≥ ρ2 ≥ · · · ≥ ρn) be a permutation of d and define the partition

λd = 1ρ1−ρ22ρ2−ρ3 · · ·nρn .

Then λd is a partition of d, and it is known that µd (Md) ⊂ Oλd
. For

x ∈ Oλd
, we now define Sd,x = Sx ∩ Oλd

and S̃d,x = µ−1
d (Sd,x) =

µ−1
d (Sx) .

Next, for v, w ∈ (Z≥0)
n−1 we define an n-tuple a (v,w) = (a1, · · · , an)

as follows:

(5.1)
a1 = w1 + · · ·+ wn−1 − v1,

ak = wk + · · ·+ wn−1 − vk + vk−1 for 2 ≤ k ≤ n− 1,
an = vn−1.

If we fix the dimension vector w, then Equation (5.1) yields a bijection
between (n − 1)-tuples v and partitions a (v,w) of

∑n−1
k=1 kwk. If no

confusion is likely to arise, then we will simply write a for a (v,w). We
also assume that Sa,x = S̃a,x = ∅ if ai < 0 for some i.

We now present the result of Maffei [4].

Theorem 5.1. Let v, w ∈ (Z≥0)
n−1, d =

∑n−1
k=1 kwk and a (v,w)

be as (5.1). Let x ∈ N be a nilpotent element of type 1w12w2 · · · (n −
1)wn−1 . Then there exists an isomorphism ϕ : M (v,w) −→ S̃a,x and
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ψ : π (M (v,w)) −→ Sa,x such that the following diagram commutes:

M (v,w)
ϕ−−−−→ S̃a,x

π

y
yµa

π (M (v,w))
ψ−−−−→ Sa,x.

Moreover, ψ maps Gv(0, 0, 0, 0) to x ∈ Sa,x.

Proof. See [4].

From now on, we fix d =
∑n−1

k=1 kwk, a collection W = (W1, · · · ,Wn−1)
of vector spaces with a dimension vector w = (w1, · · · , wn−1) and a
nilpotent element x ∈ N of type 1w12w2 · · · (n− 1)wn−1 .

In the following theorem, we construct a ring homomorphism which
yields a property of compatibility between two convolution actions on
K (Fx) and K (L (w)).

Theorem 5.2. Let K (Z) and K (Z (w)) be equipped with ring struc-
tures via the convolution products (3.1) and (4.1), respectively. Then
there exists a ring homomorphism from K (Z) to K (Z (w)) with respect
to the convolution products.

Proof. Let M
′
= µ−1 (Sx) for the projection µ : M −→ N . Then, we

have M
′
= tdS̃d,x.

Next, we set Z
′
= M

′ ×Sx M
′
. Then, by Theorem (5.1), the isomor-

phism ϕ−1 gives an isomorphism

(5.2) Z
′ ' Z (w) = tv1,v2Z

(
v1,v2;w

)
.

Let us now consider the following commutative diagram:

(5.3) M
′ ×M

′ Â Ä i // M ×M

Z
′?Â

OO

Â Ä // Z ,
?Â

OO

where Z = M ×N M .
In the commutative diagram (5.3), we notice that the embedding i

is a smooth embedding (see [2, Corollary 3.5.9]), and i−1 (Z) = Z
′
.

Furthermore, Z
′
and Z are closed subvarieties of M

′ ×M
′
and M ×M ,

respectively.
Thus, the diagram (5.3) yields the pull-back with support homomor-

phism i∗ : K (Z) −→ K
(
Z
′
)
' K (Z (w)). Notice from Theorem 5.1
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that the isomorphism K
(
Z
′
)
' K (Z (w)) is compatible with respect

the convolution products.
Now, we prove that i∗ is a ring homomorphism with respect to the

convolution products. In other words, we show that the following dia-
gram is commutative:

K(Z)⊗K (Z) ∗−−−−→ K (Z)

i∗⊗i∗
y

yi∗

K
(
Z
′
)
⊗K

(
Z
′
)
−−−−→
∗′

K
(
Z
′
)

.

Let pij : M ×M ×M −→ M ×M and p
′
ij : M

′ ×M
′ ×M

′ −→ M
′ ×M

′

be the projections to the (i, j)-factor. For F1,F2 ∈ K(Z) = K(M ×
M, Z), recall that p∗12F1 ⊗ p∗23F2 = 4∗ (p∗12F1 £ p∗23F2) , where 4∗ :
K

(
p−1
12 (Z)× p−1

23 (Z)
) −→ K

(
p−1
12 (Z) ∩ p−1

23 (Z)
)

is the pull-back induced
by the diagonal embedding 4 : M ×M ×M ↪→ (M ×M ×M)× (M ×
M×M). Thus, we may consider p∗12F1⊗p∗23F2 ∈ K(M×M×M,p−1

12 (Z)
∩p−1

23 (Z)).
Let us now consider the following commutative diagram:

(5.4) M
′ ×M

′ ×M
′

p
′
ij

²²

Â Ä ĩ // M ×M ×M

pij

²²

M
′ ×M

′ Â Ä i // M ×M.

Then,

i∗ (F1 ∗ F2)
= i∗ (p13)∗ (p∗12F1 ⊗ p∗23F2) (we consider F1 ∗ F1 ∈ K(M ×M, Z))

=
(
p
′
13

)
∗
ĩ∗ (p∗12F1 ⊗ p∗23F2) (see the proof of [2, Theorem 5.3.9])

=
(
p
′
13

)
∗
(̃
i∗p∗12F1 ⊗ ĩ∗p∗23F2

)
(by Lemma 2.1)

=
(
p
′
13

)
∗

((
p12 ◦ ĩ

)∗F1 ⊗
(
p23 ◦ ĩ

)∗F2

)

=
(
p
′
13

)
∗

((
i ◦ p

′
12

)∗
F1 ⊗

(
i ◦ p

′
23

)∗
F2

)

=
(
p
′
13

)
∗

((
p
′
12

)∗
i∗F1 ⊗

(
p
′
23

)∗
i∗F2

)

= i∗F1∗′i∗F2.
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Hence, i∗ : K(Z) −→ K
(
Z
′
)

is a ring homomorphism with respect to
the convolution product. Furthermore, we remind that the induced K-
group homomorphisms from homotopy equivalences commute with the
convolution products. The theorem is now immediate from Equation
(5.2).

We now present the main result of this paper.

Corollary 5.3. The following diagram commutes for a nilpotent
element x ∈ N of type 1w12w2 · · · (n− 1)wn−1 :

K(Z)⊗K (Fx) i∗⊗i∗−−−−→ K
(
Z
′
)
⊗K (Fx) '−−−−→ K (Z (w))⊗K (L (w))

convolution

y convolution

y convolution

y
K (Fx) −−−−→

i∗
K (Fx) −−−−→' K (L (w)) .

Proof. We first notice that the fiber Fx = µ−1(x) can be considered
as a subvariety of M

′
or M , respectively. So, Fx can be viewed as a

subvariety of M
′×M

′
or M×M through the diagonal embeddings. Thus,

we obtain the pull-back with support homomorphism i∗ : K (Fx) −→
K (Fx) from i : M

′ × M
′

↪→ M × M . Hence, i∗ : K (Fx) −→ K (Fx)
is just the restriction of i∗ : K(Z) −→ K

(
Z
′
)

because they are the

pull-backs obtained from the same embedding i : M
′ ×M

′
↪→ M ×M .

Now, the following diagram is commutative by the same argument as
the proof of Theorem (5.2):

K(Z)⊗K (Fx) convolution−−−−−−−→ K (Fx)

i∗⊗i∗
y

yi∗

K
(
Z
′
)
⊗K (Fx) convolution−−−−−−−→ K (Fx) .

On the other hand, we note that the isomorphism ϕ−1 yields an isomor-
phism Fx ' L (w) because ψ (Gv(0, 0, 0, 0)) = x. The theorem is now
immediate because the isomorphism Z

′ ' Z (w) is also obtained from
the same isomorphism ϕ−1.
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