DOI QR코드

DOI QR Code

석탄회로부터 제올라이트 A의 합성

Synthesis of Zeolite A from Coal Fly Ash

  • 지정대 (서울과학기술대학교 화학공학과) ;
  • 최고열 (서울과학기술대학교 화학공학과)
  • Jee, Jeong-Dae (Department of Chemical Engineering, Seoul National University of Science and Technology) ;
  • Choi, Ko-Yeol (Department of Chemical Engineering, Seoul National University of Science and Technology)
  • 투고 : 2011.01.11
  • 심사 : 2011.02.07
  • 발행 : 2011.04.10

초록

마이크로파 가열 방법과 기존의 가열 방법을 이용하여 석탄회로부터 제올라이트 A를 합성하였다. 반응시간, sodium aluminate의 양, 반응 온도 등이 제올라이트 A의 결정화에 미치는 영향에 대해 연구하였다. $80{\sim}100^{\circ}C$의 범위에서 제올라이트 A의 합성에 필요한 반응 시간은 3~6 h이었으며, 6 h 이상이 되면 결정화도가 오히려 감소하였다. 제올라이트 A의 합성에 필요한 sodium aluminate의 양은 $90^{\circ}C$ 이상에서는 합성용액의 $SiO_2/Al_2O_3$의 비가 0.44~1.05에서 최적이었으며, $80^{\circ}C$에서는 더 많은 양이 필요하였다. 마이크로파 가열 방법은 기존의 가열 방법에 비해 초기 결정화 속도는 약간 증가하였으나, 충분히 결정화되는데 필요한 반응시간은 서로 비슷하였다. 따라서 마이크로파 가열에 의한 석탄회로부터 제올라이트 A의 합성에 미치는 영향은 크지 않다는 것을 알 수 있었다.

Zeolite A was synthesized from coal fly ash by the microwave heating as well as the conventional heating method. The effects of reaction time, the amount of sodium aluminate, and the reaction temperature on the crystallization of zeolite A were investigated. The optimum crystallization time was about 3 to 6 h in the temperature range of $80{\sim}100^{\circ}C$. The amount of sodium aluminate was found to be optimum when the molar ratio $SiO_2/Al_2O_3$ of starting solution was in the range of 0.44 to 1.05 at above $90^{\circ}C$, However, The more amount of sodium aluminate was required to get zeolite A at $80^{\circ}C$. Although the rate of crystallization was slightly faster in the microwave heating than that in the conventional heating, the reaction time need to obtain fully crystallized zeolite A was similar in both methods. Therefore, the influence of the microwave heating was not so large compared with the conventional heating in the synthesis of zeolite A from coal fly ash.

키워드

참고문헌

  1. R. Apiratikul and P. Pavasant, Chem. Eng. J., 144, 245 (2008). https://doi.org/10.1016/j.cej.2008.01.038
  2. Y. Fan, F.-S. Zhang, J. Zhu, and Z. Liu, J. Hazard. Mater., 153, 382 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.061
  3. T. Mishra and S. K. Tiwari, J. Hazard. Mater. B, 137, 299 (2006). https://doi.org/10.1016/j.jhazmat.2006.02.004
  4. A. Molina and C. Poole, Miner. Eng., 17, 167 (2004). https://doi.org/10.1016/j.mineng.2003.10.025
  5. D. Wu, Y. Sui, X. Chen, S. He, X. Wang, and H. Kong, Fuel, 87, 2194 (2008). https://doi.org/10.1016/j.fuel.2007.10.028
  6. M. Criado, A. Jimenez, A. Torre, M. Aranda, and A. Palomo, Cem. Concr. Res., 37, 671 (2007). https://doi.org/10.1016/j.cemconres.2007.01.013
  7. N. Murayama, T. Takahashi, K. Shuku, H. H. Lee, and J. Shibata, Int. J. Miner. Process., 87, 129 (2008). https://doi.org/10.1016/j.minpro.2008.03.001
  8. R. Juan, S. Hernandez, J. M. Andres, and C. Ruiz, Fuel, 86, 1811 (2007). https://doi.org/10.1016/j.fuel.2007.01.011
  9. N. Murayama, H. Yamamoto, and J. Shibata, Int. J. Miner. Process., 64, 1 (2002). https://doi.org/10.1016/S0301-7516(01)00046-1
  10. Y. Sui, D. Wu, D. Zhang, X. Zheng, Z. Hu, and H. Kong, J. Colloid interface. Sci., 322, 13 (2008). https://doi.org/10.1016/j.jcis.2008.02.048
  11. H. Tanaka, Y. Sakai, and R. Hino, Mater. Res. Bulletin, 37, 1873 (2002). https://doi.org/10.1016/S0025-5408(02)00861-9
  12. K. S. Hui and C. Y. H. Chao, J. Hazard. Mater. B, 137, 401 (2006). https://doi.org/10.1016/j.jhazmat.2006.02.014
  13. K. Y. Choi, G. Tompsett, and W. C. Conner, Green Chem., 10, 1313 (2008). https://doi.org/10.1039/b809694e
  14. M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, and J. Hojo, Fuel, 84, 1482 (2005).
  15. R. Ballmoos and J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, p.397s, Butterworth-Heinemann, Massachusetts (1990).
  16. Y. Yaping, Z. Xiaoqiang, Q. Weilan, and W. Mingwen, Fuel, 87, 1880 (2008). https://doi.org/10.1016/j.fuel.2007.12.002
  17. S. Rayalu, S. U. Meshram, and M. Z. Hasan, J. Hazard. Mater. B, 77, 123 (2000). https://doi.org/10.1016/S0304-3894(00)00212-0
  18. D. W. Breck, Zeolite Molecular Sieves, p.267, John Wiley & Sons, New York (1974).
  19. X. Querol, A. Alastuey. A. Lopez-Soler, F. Plana, J. Andres, R. Juan, P. Ferrer, and C. Ruiz, Environ. Sci. Technol., 31, 2527 (1997). https://doi.org/10.1021/es960937t
  20. O. G. Somani, A. L. Choudhari. B. S. Rao, and S. P. Mirajkar, Minerals Chemistry and Physics, 82, 538 (2003).
  21. J. Motuzas, A. Julbe, R. D. Noble, A. Lee, and Z. J. Beresnevicius, Micropor. Mesopor. Mater., 92, 259 (2006). https://doi.org/10.1016/j.micromeso.2006.01.014
  22. X. Xu, W. Yang, J. Liu, and L. Lin, Sep. Purif. Technol., 25, 241 (2001). https://doi.org/10.1016/S1383-5866(01)00108-3