DOI QR코드

DOI QR Code

Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells

직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동

  • Kim, Byung-Ju (Department of Chemistry, Inha University) ;
  • Seo, Min-Kang (Jeonju Institute of Machinery and Carbon Composites) ;
  • Choi, Kyeong-Eun (Department of Practical Arts Education, Jeonju National University of Education) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2010.12.01
  • Accepted : 2011.01.23
  • Published : 2011.04.10

Abstract

In this work, the effect of surface treatment on mesoporous carbons (MCs) supports was investigated by analyzing surface functional groups. MCs were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in direct methanol fuel cells (DMFCs). The MCs were treated with different phosphoric acid ($H_3PO_4$) concentrations i.e., 0, 1, 3, 4, and 5 M at 343 K for 6 h. And then Pt-Ru was deposited onto surface treated MCs (H-MCs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto H-MCs were determined by specific surface area and pore size analyzer, X-ray diffraction, X-ray photoelectron, transmission electron microscopy, and inductive coupled plasma-mass spectrometer. The electrochemical properties of Pt-Ru/H-MCs catalysts were also analyzed by cyclic voltammetry experiments. From the results of surface analysis, an oxygen functional group was introduced to the surface of carbon supports. From the results, the H4M-MCs carbon supports surface treated with 4 M $H_3PO_4$ led to uniform dispersion of Pt-Ru onto H4M-MCs, resulting in enhancing the electro-catalytic activity of Pt-Ru catalysts.

본 연구에서는 중형기공 탄소(MCs)를 표면처리하여, 표면 관능기를 분석하고, 표면처리 효과를 조사하였다. 직접 메탄올 연료전지의 탄소지지체로 중형기공 실리카(SBA-15)를 이용한 전통적인 주형합성법을 이용하여 중형기공 탄소(MCs)를 합성하였다. 중형기공 탄소는 인산의 농도를 각각 0, 1, 3, 4, 및 5 M로 달리하여, 343 K에서 6 h 동안 처리하였다. 그리고 표면처리된 중형기공 탄소(H-MCs)에 화학적 환원방법을 이용하여 백금과 루테늄을 담지하였다. 표면처리된 탄소지지체에 담지된 백금-루테늄 촉매의 특성을 확인하기 위해 비표면적 측정장치(BET), X-선 회절분석법(XRD), X-선 광전자 분광법(XPS), 투과전자현미경(TEM), 유도결합 플라즈마 질량분석기(ICP-MS)를 이용하였다. 또한, 백금-루테늄 촉매의 전기화학적인 특성을 순환전류전압 실험으로 분석하였다. 표면분석의 결과로부터, 산소를 포함한 화학관능기가 탄소지지체에 도입된 사실을 알 수 있었다. 결론적으로, 4 M의 인산으로 표면처리한 H4M-MCs가 백금-루테늄의 균일한 분산과 함께 전기적인 촉매의 성능을 향상시키는 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells, 1, 5 (2001). https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  2. R. F. Horng, Energy Convers. Manag., 46, 1193 (2005). https://doi.org/10.1016/j.enconman.2004.06.018
  3. R. Sellin, C. Grolleau, S. A. Clacens, S. Pronier, J. Clacens, C. Coutanceau, and J. Leger, J. Phys. Chem. C, 113, 21735 (2009). https://doi.org/10.1021/jp907326q
  4. M. Boaro, V. Modafferi, A. Pappacena, J. Llorca, V. Baglio, F. Frusteri, P. Frontera, A. Trovarelli, and P. L. Antonucci, J. Power Sources, 195, 649 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.006
  5. D. S. Kim, I. C. Park, H. I. Cho, D. H. Kim, G. Y. Moonc, and J. W. Rh, J. Ind. Eng. Chem., 2, 265 (2009).
  6. S. Kim, M. H. Cho, J. R. Lee, H. J. Ryu, and S. J. Park, Korean. Chem. Eng. Res., 43, 756 (2005).
  7. C. H. Lee, C. H. Park, and Y. M. Lee, J. Membr. Sci., 313, 199 (2008). https://doi.org/10.1016/j.memsci.2008.01.004
  8. J. K. Shin, S. M. Jung, S. H. Baeck, and Y. S. Tak, Appl. Chem. Eng., 21, 435 (2010).
  9. S. Kim and S. J. Park, Electrochim. Acta, 52, 3013 (2007). https://doi.org/10.1016/j.electacta.2006.09.060
  10. T. Kawaguchi, W. Sugiimoto, Y. Murakami, and Y. Takasu, J. Catalysis, 229, 176 (2005). https://doi.org/10.1016/j.jcat.2004.10.020
  11. S. M. Jung, J. K. Shin, K. S. Kim, S. H. Baeck, and Y. S. Tak, Appl. Chem. Eng., 21, 537 (2010).
  12. K. D. Nam, T. J. Kim, S. K. Kim, B. R. Lee, D. H. Peck, S. K. Ryu, and D. H. Jung, J. Korean Ind. Eng. Chem., 17, 223 (2006).
  13. J. B. Xu, T. S. Zhao, and Z. X. Liang, J. Power Sources, 185, 857 (2008). https://doi.org/10.1016/j.jpowsour.2008.09.039
  14. S. J. Park, H. J. Jung, and C. H. Na, Polymer (Korea), 27, 46 (2003).
  15. C. W. Lin, R. Thangamuthu, and C. J. Yang, J. Membr. Sci., 253, 23 (2005). https://doi.org/10.1016/j.memsci.2004.12.021
  16. R. K. Rao and D. C. Trivedi, Coord. Chem. Rev., 249, 613 (2005). https://doi.org/10.1016/j.ccr.2004.08.015
  17. H. Qiao, M. Kunimatsu, and T. Okada, J. Power Sources, 139, 30 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.003
  18. C. A. Frysz and D. D. L. Chung, Carbon, 35, 1111 (1997). https://doi.org/10.1016/S0008-6223(97)00083-3
  19. S. J. Park and J. B. Donnet, J. Colloid Interface Sci., 206, 29 (1998). https://doi.org/10.1006/jcis.1998.5672
  20. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredirckson, B. F. Chemlka, and G. D. Stucky, Science, 279, 548 (1998). https://doi.org/10.1126/science.279.5350.548
  21. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 13, 677 (2001). https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  22. S. J. Park and M. H. Kim, J. Mater. Sci., 35, 1 (2002).
  23. W. Li, C. Liang, J. Qiu, J. Zhou, W. Han, Z. Wei, G. Sun, and Q. Xin, Carbon, 40, 791 (2002). https://doi.org/10.1016/S0008-6223(02)00039-8
  24. K. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, J. Mater. Chem., 14, 505 (2004). https://doi.org/10.1039/b314224h
  25. A. Taguchi and F. Schuth, Microp. and Mesop. Mater., 77, 1 (2005). https://doi.org/10.1016/j.micromeso.2004.06.030
  26. S. Kim, J. R. Lee, and S. J. Park, Korean Chem. Eng. Res., 46, 118 (2008).
  27. S. J. Park, J. S. Oh, and D. H. Suh, J. Korean Ind. Eng. Chem., 14, 586 (2003).
  28. Y. H. Kim and S. J. Park, Appl. Chem. Eng., 21, 183 (2010).
  29. C. K. Dyer, J. Power Sources, 106, 31 (2002). https://doi.org/10.1016/S0378-7753(01)01069-2
  30. M. Ciureanu, D. Mikhailenko, and S. Kaliaguine, Catal. Today, 82, 195 (2003). https://doi.org/10.1016/S0920-5861(03)00233-5
  31. M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu, and T. J. Bandosz, Carbon, 46, 1475 (2008). https://doi.org/10.1016/j.carbon.2008.06.027