DOI QR코드

DOI QR Code

토양유실 저감을 위한 지표피복재 적용

Applications of Surface Cover Materials for Reduction of Soil Erosion

  • 원철희 (BK 21 친환경건설전문가양성사업단) ;
  • 신민환 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 최용훈 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 신재영 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 박운지 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 최중대 (강원대학교 농업생명과학대학 지역건설공학과)
  • Won, Chul-hee (BK 21 Enviro-NICE) ;
  • Shin, Min-hwan (Division of Agricultural Engineering, Kangwon National University) ;
  • Choi, Yong-hun (Division of Agricultural Engineering, Kangwon National University) ;
  • Shin, Jae-young (Division of Agricultural Engineering, Kangwon National University) ;
  • Park, Woon-ji (Division of Agricultural Engineering, Kangwon National University) ;
  • Choi, Joong-dae (Division of Agricultural Engineering, Kangwon National University)
  • 투고 : 2011.08.29
  • 심사 : 2011.10.21
  • 발행 : 2011.11.30

초록

The objective of this research was to experimentally test the effect of rice straw mats on the reduction of runoff, sediment and discharge under a laboratory scale with different rainfall intensity and slopes. We used the small runoff plots of $1m{\times}1m{\times}0.65m$ ($L{\times}W{\times}H$) in size were filled with loamy sand. Experimental treatments were bare (control), rice straw mats + PAM(SP), rice straw mats + PAM + sawdust(SPS) and rice straw mats + PAM + rice husks(SPR); slope of 10% or 20%; and rainfall intensity of 30 or 60 mm/hr. Runoff volume and coefficient from covered plots were significantly lower than those from control plots. Under the 30 mm/hr and 10% simulations, average runoff coefficient of covered plots decreased more than 92%. Under 60 mm/hr and 20% simulations, the ratios were between 39.8~58.1%. Under the condition of 30 mm/hr rainfall and 10% slope, sediment discharge from covered plots was practically zero. And at 20% plots, sediment reduction ratio was more than 95%. Under the condition of 60 mm/hr rainfall, sediment reduction ratio of 10 and 20% plots ranged between 86.3~95.3% and between 79.8~86.5%, respectively. The differences in initial runoff time, runoff and sediment discharge among different cover materials were not significant. Rainfall intensity showed higher impact on initial runoff time, runoff, and sediment discharge than slope. It was also shown that even if runoff reduction by surface cover were low, sediment discharge reduction could be very significant and contribute to improve the water quality of streams in sloping agricultural regions. It was concluded that the use of straw mat and PAM on sloping agricultural fields could reduce soil erosion and muddy runoff significantly and help improve the water quality and aquatic ecosystem in receiving waters.

키워드

참고문헌

  1. 권기수, 이기중, 구본준, 최중대(2000). PAM을 이용한 고랭지 경사 농경지의 토양 유실방지 효과. 강원대학교 농업과학연구소 논문집, 11, pp. 91-98.
  2. 김현수, 김진수, 김영일, 정병호(2004). 논의 영양물질 배출 부하 특성과 수질정화 기능분석. 한국관개배수학회지, 11(1), pp. 36-44.
  3. 소양강댐 토사유출저감 기획단(2007). 소양강댐 유역 고랭지 경작지관리방안.
  4. 신민환, 원철희, 최용훈, 서지연, 이재운, 임경재, 최중대(2009). 인공강우기에 의한 시험포장 토양유실량 모의-강우강도, 지표면 및 경사조건 변화-. 수질보전 한국물환경학회지, 25(5), pp. 785-791.
  5. 윤재흥, 강동균, 조성신, 김한섭(2003). 경작지 토양유실 특성 및 탁수저감 방안, 공동 추계학술발표회논문집, 대한상하수도학회.한국물환경학회, pp. E 55-E 58.
  6. 주진호, 양재의, 정영상(2004). 유역관리와 도암댐의 수질 -농경지 침식을 중심으로-. 2004 춘천물포럼 논문집, pp. 353-390.
  7. 최봉수, 임정은, 최용범, 임경재, 최중대, 주진호, 양재의, 옥용식(2009). 경사지 토양유실 방지를 위한 PAM (Polyacrylamide) 시제품의 효율성 비교평가: 실내 인공강우 실험. 한국환경농학회지, 28(3), pp. 249-257.
  8. 최용범, 최봉수, 김세원, 이상수, 옥용식(2010). 고랭지 밭 토양유실 방지를 위한 폴리머 소재(폴리아크릴아마이드 및 바이오폴리머)의 현장적용성 평가: 작물재배실험. 대한환경공학회지, 32(1), pp. 1024-1029.
  9. 최중대(1997). 농촌유역의 관리가 비점원 오염물질의 하천 유입에 미치는 영향. 농촌개발연구, 1(1), pp. 91-107.
  10. 환경부(2001). 수질오염공정시험법.
  11. 환경부(2007). 소양강댐 유역 고랭지 경작지 관리방안.
  12. Barvenik, F. W. (1994). Polyacrylamide characteristics related to soil applications. Soil. Sci., 158, pp. 235-243. https://doi.org/10.1097/00010694-199410000-00002
  13. Basic, F., Kisic, I., Butorac, A., Nestroy, O., and Mesic, M. (2001). Runoff and Soil Loss under different Tillage Methods on Stagnic Luvisols in Central Croatia. Soil & Tillage Research, 62, pp. 145-151. https://doi.org/10.1016/S0167-1987(01)00214-8
  14. Benik, S. R., Wilson, B. N., Biesboer, D. D., Hansen, B., and Stenlund, D. (2003). Evaluation of erosion control products using natural rainfall events. Journal of Soil and Water Conservation, 58(2), pp. 98-105.
  15. Choi, J. D., Jang, S. O., Choi, B. Y., and Lyou, S. H. (2000). Monitoring Study on Groundwater Quality of an Alluvial Plane in the North Han River Basin. Journal of the KSWQ, 16(3), pp. 283-294.
  16. Entry, J. A., Sojka, R. E., Watwood, M., and Ross, C. (2002). Poluacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants. Enviro. Poll., 120, pp. 191-200. https://doi.org/10.1016/S0269-7491(02)00160-4
  17. Faucette, L. B., Risse, L. M., Nearing, M. A., Gaskin, J. W., and West, L. T. (2004). Runoff, erosion, and nutrient losses from compost and mulch blankets under simulated rainfall. Journal of Soil & Water Conservation, 59(4), pp. 154-160.
  18. Flanagan, D. C., Norton, L. D., and shainberg, I. (1997). Effect of water chemistry and soil amendments on a silt loam soil-Part I. Infiltration and Runoff. Trans. ASABE, 40, pp. 1549-1554.
  19. Garcia-Orenes, F., Cerda, A., Mataix-Solera, J., Guerrero, C., and Bodi, M. B. (2009). Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil & Tillage Research, 106, pp. 117-123. https://doi.org/10.1016/j.still.2009.06.002
  20. Jin, K., Cornelis, W. M., Gabriels, D., Schiettecatte, W., Neve, S. D., Lu, J., Buysse, T., Wu, J., Cai, D., Jin. J., and Harmann, R. (2008). Soil management effects on runoff and soil loss from field rainfall simulation. CATENA, 75, pp. 191-199. https://doi.org/10.1016/j.catena.2008.06.002
  21. Jordan, A., Zavala, L. M., and Gil, J. (2010). Effects of mulching on soil physical properties and runoff under semiarid conditions in southern Spain. CATENA, 81, pp. 77-85. https://doi.org/10.1016/j.catena.2010.01.007
  22. KATS (2002). Test method for particle size distribution of soils.
  23. KATS (2006). Test method for density of soil particles.
  24. Lal, R. (1999). Soil quality and soil erosion. Water conservation Society, Boca Raton, Florida, USA, pp. 329.
  25. Lentz, R. D. and Bjorneberg, D. L. (2003). Polyacrylamide and Straw Residue Effects on Irrigation Furrow Erosion and Infiltration. Journal of Soil and Water Conservation, 58(5), pp. 312-319.
  26. Lentz, R. D. and Sojka, R. E. (1994). Field results using polyacrylamide to manage furrow erosion and infiltration. Soil Sci., 158, pp. 274-282. https://doi.org/10.1097/00010694-199410000-00007
  27. Locke, M. A., Zablotowicz, R. M., Reddy, K. N., and Steinriede, R. W. (2008). Tillage Management to Mitigate Herbicide Loss in Runoff under Simulated Rainfall Conditions. Chemosphere, 70, pp. 1422-1428. https://doi.org/10.1016/j.chemosphere.2007.09.006
  28. Martinez, J. R. F., Zuazo, V. H. D., and Raya, A. M. (2006). Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Science of the Total Environment, 358, pp. 46-60. https://doi.org/10.1016/j.scitotenv.2005.05.036
  29. McElhiney, M. and Osterli, P. (1996). An integrated approach for water quality: The PAM connection-West Stanislaus HUA, CA. p. 27-30. In R. E. Sojka and R. D. Lentz (eds.) Proc.: Managing irrigation induced erosion and infiltration with polyacrylamide . College of Southern Idaho, Twin Falls, ID. 6-8 May 1996. University of Idaho Misc. Publ. No 101-96. University of Idaho, Twin Falls, ID.
  30. Orts, W. J., Sojka, R. E., Glenn, G. M., and Gross, R. A. (1999). Preventing soil erosion with polymer additivies, December, Polymer News, 24, pp. 406-413.
  31. Pote, D. H., Grigg, B. C., Blanche, C. A., and Daniel, T. C. (2004). Effects of pine straw harvesting on quantity and quality of surface runoff. Journal of Soil and Water Conservation, 59(5), pp. 197-203.
  32. Seeger, M. (2007). Uncertainty of factors determining runoff and erosion processes as quantified by rainfall simulations. CATENA, 71, pp. 56-67. https://doi.org/10.1016/j.catena.2006.10.005
  33. Seybold, C. A. (1994). Polyacrylamide review: Soil conditioning and environmental fate. Communications in Soil Science and Plant Analysis, 25(11-12), pp. 2171-2185. https://doi.org/10.1080/00103629409369180
  34. Shainberg, I., Warrington, D. N., and Rengasamy, P. (1990). Water quality and PAM interactions in reducting surface sealing. Soil Sci., 149, pp. 301-307. https://doi.org/10.1097/00010694-199005000-00007
  35. Sharpley, A. N. and Halvorson, A. D. (1994). The Management of Soil Phosphorous Availability and its Impact on Surface Water Quality In R. Lal and B. A. Steward (eds.), Soil Processes and Water Quality (part of the series, Advance in Soil Science). Boca Raton, FL: Lewis Publishers.
  36. Smith, D. R., Warnemuende, E. A., Huang, C., and Heathman, G. C. (2007). How does The First Year tilling a Long-Term No-Tillage Field Impact Soluble Nutrient Losses in Runoff. Soil & Tillage Research, 95, pp. 11-18. https://doi.org/10.1016/j.still.2006.03.019
  37. Tiscareno-Lopez, M., Velasquez-valle, M., Salinas-Garcia, J., and Baez-gonzalez, A. D. (2004). Nitrogen and Organic Matter Losses in NO-Till Corn Cropping Systems. Journal of American Water Resources Association, 40(2), pp. 401-408. https://doi.org/10.1111/j.1752-1688.2004.tb01038.x