DOI QR코드

DOI QR Code

The Effects of Fertilization on Growth Performances and Physiological Characteristics of Liriodendron tulipifera in a Container Nursery System

시비 처리가 백합나무 용기묘의 생장 및 생리적 특성에 미치는 영향

  • Cho, Min Seok (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Lee, Soo Won (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Park, Byung Bae (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Park, Gwan Su (Department of Environment and Forest Resources, Chungnam National University)
  • 조민석 (국립산림과학원 산림생산기술연구소) ;
  • 이수원 (국립산림과학원 산림생산기술연구소) ;
  • 박병배 (국립산림과학원 산림보전부) ;
  • 박관수 (충남대학교 산림환경자원학과)
  • Received : 2011.03.30
  • Accepted : 2011.04.22
  • Published : 2011.06.30

Abstract

Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate growth performance, photosynthesis, chlorophyll fluorescence, and chlorophyll contents of Liriodendron tulipifera growing under three different fertilization treatments (Constant rate, Three-stage rate, and Exponential rate fertilization). Root collar diameter, height, and biomass of L. tulipifera were the highest at Constant treatment. Like growth performance, seedling quality index (SQI) were higher at Constant than at other treatments, but not significantly different among treatments. L. tulipifera showed good photosynthetic capacity at all treatments. Photochemical efficiency and chlorophyll contents were significantly lower at Exponential than at other treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

시비는 시설양묘과정에서 반드시 실시되어야 하지만, 토양 및 계류수 오염의 문제를 야기할 수 있다. 이에 따라 본 연구에서는 시설양묘과정에서 시비량 조절에 따른 친환경적 경제적 시비방법 구명을 위해 Constant rate, Three stage rate 및 Exponential rate 등의 3 가지 시비 처리를 실시하였으며, 시비 처리에 따른 생장 특성 및 광합성, 엽록소 형광반응, 엽록소 함량 등을 조사 분석하였다. 그 결과, 근원경, 간장 및 물질생산량은 Constant 처리에서 가장 우수하였다. 묘목품질지수 또한 같은 경향을 보였지만, 유의적 차이는 나타나지 않았다. Exponential 처리구에서도 50%의 시비량으로 규격묘 생산이 가능했다. 광합성 능력은 세 처리구 모두 우수하였으며, 광화학 효율과 엽록소 함량은 Exponential 처리구에서 유의적으로 가장 낮게 나타났다. Exponential 시비 방법으로 생리 및 생장에 문제없는 규격묘를 생산할 수 있었다. 즉, 최소 비용의 최대 생장 효과와 함께 친환경적 시비 방법이라 할 수 있다.

Keywords

References

  1. 국립산림과학원. 2010. 2009년도 연구사업 보고서 -산림자원육성분과-. 국립산림과학원. pp. 173-204.
  2. 권기원, 조민석, 김길남, 이수원, 장경환. 2009. 시비 처리에 따른 상수리나무(Quercus acutissima) 용기묘와 노지묘의 광합성 및 생장 특성. 한국임학회지 98(3): 331-338.
  3. 김판기, 이용섭, 정동준, 우수영, 성주한, 이은주. 2001. 광도가 내음성이 서로 다른 3수종의 광합성 생리에 미치는 영향. 한국임학회지 90(4): 476-487.
  4. 김판기, 이은주. 2001. 광합성의 생리상태(1) -광도와 엽육내 $CO_{2}$분압 변화에 대한 광합성 반응-. 한국농림기상학회지 3(2): 126-133.
  5. 농업기술연구소. 1988. 토양분석법: 토양, 식물체 토양미생물. 농청진흥청 농업기술연구소. pp. 450.
  6. 산림청. 2011. 2011년도 주요업무 세부추진계획. 산림청. pp. 456.
  7. 시그마 플롯. 2000. 필사이언스. pp. 136.
  8. 안찬훈, 이재선, 김용욱, 문흥규. 2010. 생물반응기 내 침지시간에 따른 백합나무 체세포배 발아 및 생화학적 변화. 한국임학회지 99(3): 423-431.
  9. 유근옥, 송정호, 최형순, 권해연, 권용락. 2007. 백합나무 양묘방법에 따른 묘목품질 비교. 한국임학회지 96(3): 307-316.
  10. 유근옥, 권해연, 최형순, 김인식, 조도현. 2009. 백합나무의 인공교배 방법에 따른 교배 효율성 비교. 한국임학회지 98(6): 696-702.
  11. 이수원, 최정호, 유세걸, 김석권, 배종향, 한석교. 2006. 상토 조성이 활엽수 용기묘의 생장특성에 미치는 영향. 한국생물환경조절학회지 15(3): 244-249.
  12. 이철호, 신창호, 김규식, 최명석. 2006. 광강도에 따른 음나무 유묘의 생장 및 광합성 특성. 한국약용작물학회지 14(4): 244-249.
  13. 임종환, 우수영, 권미정, 천정화, 신준환. 2006. 한라산 구상나무 건전개체와 쇠약개체의 온도변화에 따른 광합성능력과 수분이용효율. 한국임학회지 95(6): 705-710.
  14. 최용봉, 김종희. 1995. 인공산성우의 처리에 따른 소나무와 곰솔 침엽의 엽록소 형광변화. 한국임학회지 84(1): 97-102.
  15. Aranda, I., Gil, L. and Pardos, J.A. 2002. Physiological responses of Fagus sylvatica L. seedlings under Pinus sylvestris L. and Quercus pyrenaica Will. Overstories. Forest Ecology and Management 162: 153-164. https://doi.org/10.1016/S0378-1127(01)00502-3
  16. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
  17. Barker, M.G., Press, M.C. and Brown, N.D. 1997. Photosynthetic characteristics of dipterocarp seedlings in three tropical rain forest light environments: a basis for niche partitioning. Oecologia 112(4): 453-463. https://doi.org/10.1007/s004420050332
  18. Bayala, J., Dianda, M., Wilson, J., Ouèdraogo, S.J. and Sanon, K. 2009. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 38(3): 309-322. https://doi.org/10.1007/s11056-009-9149-4
  19. Bose, S., Herbert, S.K. and Fork, D.C. 1988. Fluorescence characteristics of photoinhibition and recovery in a sun and a shade species of the red algal genus Porphyra. Plant Physiology 86(3): 946-950. https://doi.org/10.1104/pp.86.3.946
  20. Broschat, T.K. 1995. Nitrate, phosphate, and potassium leaching from container-grown plants fertilized by several methods. Hortscience 30(1): 74-77.
  21. Bumgarner, M.L., Salifu, K.F. and Jacobs, D.F. 2008. Subirrigation of Quercus rubra seedlings: Nursery stock quality, media chemistry, and early field performance. Hortscience 43(7): 2179-2185.
  22. Burdett, A.N., Simpson, W.R. and Thompson, C.F. 1983. Root development and plantation establishment success. Plant and Soil 71: 103-110. https://doi.org/10.1007/BF02182645
  23. Close, D.C., Bail, I., Hunter, S. and Beadle, C.L. 2005. Effects of exponential nutrient-loading on morphological and nitrogen characteristics and on after-planting performance of Eucalyptus globulus seedlings. Forest Ecology and Management 205: 397-403. https://doi.org/10.1016/j.foreco.2004.10.041
  24. Court-Picon, M., Gadbin-Henry, C., Guibal, F. and Roux, M. 2004. Dendrometry and morphology of Pinus pinea L. in lower province (France): adaptability and variability of provenances. Forest Ecology and Management 194: 319-333. https://doi.org/10.1016/j.foreco.2004.02.024
  25. Davis, A.S. and Jacobs, D.F. 2005. Quantifying root system quality of nursery seedlings and relationship to outplanting performance. New Forests 30: 295-311. https://doi.org/10.1007/s11056-005-7480-y
  26. Deans, J.D., Mason, W.L., Cannell, M.G.R., Sharpe, A.L. and Sheppard, L.J. 1989. Growing regimes for bare-root stock of Sitka spruce, Douglas fir and Scots pine. 1. Morphology at the end of the nursery phase. Forestry 62: 53-60.
  27. Demmig, B. and Björkman, O. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of $O_{2}$ evolution in leaves of higher plants. Planta 171(2): 171-184. https://doi.org/10.1007/BF00391092
  28. Dumroese, R.K., Page-Dumroese, D.S., Salifu, K.F. and Jacobs, D.F. 2005. Exponential fertilization of Pinus monticola seedlings:nutrient uptake efficiency, leaching fractions, and early outplanting performance. Canadian Journal of Forest Research 35(12): 2961-2967. https://doi.org/10.1139/x05-226
  29. Gazal, R.M., Blanche, C.A. and Carandang, W.M. 2004. Root growth potential and seedling morphological attributes of narra (Pteracarpus indicus Willd.) transplants. Forest Ecology and Management 195: 259-266. https://doi.org/10.1016/j.foreco.2004.03.023
  30. Grossniclke, S.C. 2005. Importance of root growth in overcoming planting stress. New Forest 30: 273-294. https://doi.org/10.1007/s11056-004-8303-2
  31. Hernandez, E.I., Vilagrosa, A., Luis, V.C., Llorca, M., Chirino, E. and Vallejo, V.R. 2009. Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environmental and Experimental Botany 67(1): 269-276. https://doi.org/10.1016/j.envexpbot.2009.07.004
  32. Hiscox, J.D. and Israelstam, G.F. 1978. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334.
  33. Hughes, A.P. and Freeman, P.R. 1967. Growth analysis using frequent small harvests. Journal of Applied Ecology 4: 553-560. https://doi.org/10.2307/2401356
  34. Imo, M. and Timmer, V.R. 1999. Vector competition analysis of black spruce seedling responses to nutrient loading and vegetation control. Canadian Journal of Forest Research 29(4): 474-486. https://doi.org/10.1139/x99-020
  35. Juntunen, M-L., Hammar, T. and Rikala, R. 2003. Nitrogen and phosphorus leaching and uptake by container birch seedlings (Betula pendula Roth) grown in three different fertilizations. New Forests 25(2): 133-147. https://doi.org/10.1023/A:1022686402578
  36. Krause, G.H. and Weis, E. 1991. Chlorophyll fluorescence and photosynthesis; The basics. Annual Review of Plant Physiology and Plant Molecular Biology 42: 313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  37. Lambers, H. and Poorter, H. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187-261.
  38. Landis, T.D., Tinus, R.W., McDonald, S.E. and Barnett, J.P. 1989. The container tree nursery manual. Vol. 4. USDA Forest Service, Agriculture Handbook. pp. 674.
  39. Leiva, M.J. and Fernandez-Ales, R. 1998. Variability in seedling water status during drought within a Quercus Ilex subsp. ballota population, and its relation to seedling morphology. Forest Ecology and Management 111: 147-156. https://doi.org/10.1016/S0378-1127(98)00320-X
  40. Lloret, F., Casanovas, C. and Penuelas, J. 1999. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Functional Ecology 13(2): 210-216. https://doi.org/10.1046/j.1365-2435.1999.00309.x
  41. Luis, V.C., Puertolas, J., Climent, J., Peters, J., Gonzalez- Rodriguez, A.M., Morales, D. and Jimenez, M.S. 2009. Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. European Journal of Forest Research 128(3): 221-229. https://doi.org/10.1007/s10342-009-0257-7
  42. Luis, V.C., Llorca, M., Chirino, E., Hernandez, E.I. and Vilagrosa, A. 2010. Differences in morphology, gas exchange and root hydraulic conductance before planting in Pinus canariensis seedlings growing under different fertilization and light regimes. Trees 24(6): 1143-1150. https://doi.org/10.1007/s00468-010-0490-1
  43. Mackinney, G. 1941. Absorption of light by chlorophyll solution. Journal of Biological Chemistry 140: 315-322.
  44. Mattsson, A. 1996. Predicting field performance using seedling quality assessment. New Forests 13: 227-252.
  45. Oliet, J., Planelles, R., Artero, F., Valverde, R., Jacobs, D. and Segura, M.L. 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forests 37(3): 313-331. https://doi.org/10.1007/s11056-008-9126-3
  46. Qu, L.Y., Quoreshi, A.M. and Koike, T. 2003. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes. Plant and Soil 255 : 293-302.
  47. Quoreshi, A.M. and Timmer, V.R. 2000. Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor:a bioassay study. Canadian Journal of Forest Research 30(5): 744-752. https://doi.org/10.1139/x00-003
  48. Rascher, U., Liebig, M. and Luttge, U. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell and Environment 23(12): 1397-1405. https://doi.org/10.1046/j.1365-3040.2000.00650.x
  49. Salifu, K.F. and Timmer, V.R. 2003. Optimizing nitrogen loading in Picea mariana seedlings during nursery culture. Canadian Journal of Forest Research 33(7): 1287-1294. https://doi.org/10.1139/x03-057
  50. SAS Institute Inc. 2000. SAS/STAT TM Guide for Personal Computer. Version 8 Edition. SAS Institute Inc., N. C. 1026pp.
  51. Sestak, Z., Catsk, J. and Jarvis, P.G. 1971. Plant Photosynthetic Production Manual of Methods. The Hague. Hertogenbosch. pp. 818.
  52. Timmer, V.R. 1997. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New Forests 13: 279-295. https://doi.org/10.1023/A:1006502830067
  53. Trubat, R., Cortina, J. and Vilagrosa, A. 2008. Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. Journal of Arid Environments 72(6): 879-890. https://doi.org/10.1016/j.jaridenv.2007.11.005
  54. Tsakaldimi, M., Zagas, T., Tsitsoni, T. and Ganatsas, P. 2005. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant and Soil 278: 85-93. https://doi.org/10.1007/s11104-005-2580-1
  55. Way, D., Seegobin, S. and Sage, R. 2007. The effect of carbon and nutrient loading during nursery culture on the growth of black spruce seedlings: a six-year field study. New Forests 34(3): 307-312. https://doi.org/10.1007/s11056-007-9053-8
  56. Wilson, E.D., Vitols, K.C. and Park, A. 2007. Root characteristics and growth potential of container and bare-root seedlings of red oak (Quercus rubra L.) in Ontario, Canada. New Forests 34(2): 163-176. https://doi.org/10.1007/s11056-007-9046-7
  57. Xu, X. and Timmer, V.R. 1999. Growth and nitrogen nutrition of Chinese fir seedlings exposed to nutrient loading and fertilization. Plant and Soil 216: 83-91. https://doi.org/10.1023/A:1004733714217