DOI QR코드

DOI QR Code

NH3 SNCR을 이용한 NOx 제거 : 실험 및 모사

NH3-based SNCR of NOx : Experimental and Simulation

  • 차진선 (서울시립대학교 환경공학부) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 전종기 (공주대학교 화학공학부) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Cha, Jin Sun (School of Environmental Engineering, University of Seoul) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 투고 : 2011.05.24
  • 심사 : 2011.07.03
  • 발행 : 2011.08.10

초록

본 연구에서는 SNCR 공정에서 온도, NSR, 산소 농도가 질소산화물 제거 효율에 미치는 영향을 실험과 CHEMKIN-II 프로그램을 사용하여 수치적으로 조사하였다. 산소가 없는 조건에서 NO 제거 효율은 반응기 온도에 따라 증가하였다. 반면 산소농도가 4%일 때, NO 제거 효율은 $900{\sim}950^{\circ}C$에서 최대를 나타내었다. 산소의 존재는 저온에서 NO 제거를 증가시키는 것으로 나타났다. 산소농도와 무관하게 NO 제거 효율은 NSR에 따라 증가하였다. CHEMKIN-II에 의해 예측된 NO 제거 효율의 온도와 NSR-의존성은 실험결과와 유사하였다.

In this study, effects of temperature, NSR, and oxygen concentration on the $NO_x$ removal efficiency of an SNCR process were investigated experimentally as well as numerically using CHEMKIN-II program. The NO removal efficiency increased with the reactor temperature under oxygen-free condition, whereas when the oxygen concentration was 4%, the NO removal efficiency showed a maximum value at $900{\sim}950^{\circ}C$. The pressure of oxygen was shown to enhance the NO removal at low temperature. Regardless of the oxygen concentration, the NO removal efficiency increased with NSR. The temperature and NSR-dependencies of the NO removal efficiency predicted by CHEMKIN-II simulations were similar to that of the experimental results.

키워드

참고문헌

  1. J. C. Choi, C. H. Cho, K. E. Jeong, J. K. Jeon, J. H. Yim, and Y. K. Park, J. Kor. Ind. Eng. Chem., 19, 92 (2008).
  2. M. T. Javed, N. Irfan, and B. M. Gibbs, J. Env. Manage., 83, 251 (2007). https://doi.org/10.1016/j.jenvman.2006.03.006
  3. J .A. Miller and C. T. Bowman, Prog. Energy Combust. Sci., 15, 287 (1989). https://doi.org/10.1016/0360-1285(89)90017-8
  4. J. A. Silver and C. E. Kolb, J. Phys. Chem., 86, 3240 (1982). https://doi.org/10.1021/j100213a033
  5. R. K. Lyon and J. E. Hardy, Ind. Eng. Chem. Fundam., 25, 19 (1986). https://doi.org/10.1021/i100021a003
  6. P. Lodder and J. B. Lefers, Chem. Eng. J., 30, 161, (1985). https://doi.org/10.1016/0300-9467(85)80026-5
  7. R. K. Lyon, Int. J. Chem. Kinet., 8, 315, (1976). https://doi.org/10.1002/kin.550080213