DOI QR코드

DOI QR Code

α,ω-비스(4-사이아노아조벤젠-4'-옥시)알케인들의 열방성 액정 특성

Thermotropic Liquid Crystalline Properties of α,ω-Bis(4-cyanoazobenzene-4'-oxy)alkanes

  • 정승용 (단국대학교 광 에너지 연구센터) ;
  • 김효갑 (단국대학교 광 에너지 연구센터) ;
  • 마영대 (단국대학교 광 에너지 연구센터)
  • Jeong, Seung Yong (Center for Photofunctional Energy Materials, Dankook University) ;
  • Kim, Hyo Gap (Center for Photofunctional Energy Materials, Dankook University) ;
  • Ma, Yung Dae (Center for Photofunctional Energy Materials, Dankook University)
  • 투고 : 2011.02.18
  • 심사 : 2011.05.26
  • 발행 : 2011.08.10

초록

선상의 액정 dimer 동족체인 ${\alpha},{\omega}$-(4-사이아노아조벤젠-4'-옥시)알케인(CATWETn, n = 2~10, 유연격자 중의 메틸렌 단위들의 수)을 합성함과 동시에 이들의 열방성 액정 거동을 검토하였다. n이 3, 6인 dimer들은 단방성 네마틱 상을 형성하는 반면 다른 유도체들은 양방성 네마틱 상을 형성하였다. Dimer들의 네마틱액체 전이온도와 상 전이시의 엔트로피 변화는 n의 함수로서 커다란 홀수-짝수 효과를 나타냈다. 이러한 상 전이 거동은 유연격자의 홀수-짝수의 변화에 의한 유연격자의 평균적인 형태변화의 견지에서 합리적으로 설명된다. CATWETn이 나타내는 네마틱 상의 열적 안정성과 질서도 그리고 홀수-짝수 효과는 메톡시, 니트로 그리고 펜틸기로 치환된 dimer에 대해 보고된 결과와 유사한 경향을 나타내는 반면 monomesogenic 화합물인 1-{4-(4'-사이아노페닐아조)펜옥시}알킬브롬 그리고 곁사슬형 액정 고분자인 폴리[1-{4-(4'-사이아노페닐아조)펜옥시알킬옥시}에틸렌]에 대해 보고된 결과와 현저히 달랐다. 이들의 결과를 Imirie에 의한 'virtural trimer model'의 견지에서 검토하였다.

A homologous series of linear liquid crystal dimers, the ${\alpha},{\omega}$-bis(4-cyano-azobenzene-4'-oxy)alkanes (CATWETn, where n, the number of methylene units in the spacer, is 2~10) were synthesized, and their thermotropic liquid crystalline phase behavior were investigated. The CATWETn with n of 3 and 6 exhibited monotropic nematic phases, whereas other derivatives showed enantiotropic nematic phases. The nematic-isotropic transition temperatures of the dimers and their entropy variation at the phase transition showed a large odd-even effect as a function of n. This phase transition behavior was rationalized in terms of the change in the average shape of the spacer on varying the parity of the spacer. The thermal stability and degree of order in the nematic phase and the magnitude of the odd-even effect of CATWETn were similar to those for the methoxy-, nitro-, and pentyl-substituted dimers, while they were significantly different from those for the monomesogenic compounds, 1-{4-(4'-cyanophenylazo)phenoxy}alkylbromides and the side-chain liquid-crystalline polymers, the poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of 'virtual trimer model' by Imrie.

키워드

과제정보

연구 과제 주관 기관 : 경기도지역협력센터

참고문헌

  1. Y. Yu and T. Ikeda, J. Photochem. Photobiol. C: Photochem. Rev., 5, 247 (2004). https://doi.org/10.1016/j.jphotochemrev.2004.10.004
  2. C. J. Barrett, J. Mamiya, K. G. Yager, and T. Ikeda, Soft Matter, 3, 1249 (2007). https://doi.org/10.1039/b705619b
  3. T. Ikeda, J. Mamiya, and Y. Yu, Angew. Chem. Int. Ed., 46, 506 (2007). https://doi.org/10.1002/anie.200602372
  4. T. Yoshino, M. Kondo, J. Mamiya, M. Kinoshita, Y. Yu, and T. Ikeda, Adv. Mater., 22, 1361 (2010). https://doi.org/10.1002/adma.200902879
  5. N. Tamaoki and T. Kamei, J. Photochem. Photobiol. C: Photochem. Rev., 11, 47 (2010). https://doi.org/10.1016/j.jphotochemrev.2010.09.001
  6. J. I. Jin, Mol. Cryst. Liq. Cryst., 267, 249 (1995). https://doi.org/10.1080/10587259508034002
  7. C. T. Imrie and G. R. Luckhurst, Handbook of Liquid Crystals, eds. D. Demus, G. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 2B, 801, Wiley-VCH, Weinheim-New York (1998).
  8. C. T. Imrie and P. A. Henderson, Chem. Soc. Rev., 36, 2096 (2007). https://doi.org/10.1039/b714102e
  9. C. T. Imrie, P. A. Henderson, and G.-Y. Yeap, Liq. Cryst., 36, 755 (2009). https://doi.org/10.1080/02678290903157455
  10. T. Donaldson, H. Staesche, Z. B. Lu, P. A. Henderson, M. F. Achard, and C. T. Imrie, Liq. Cryst., 37, 1097 (2010). https://doi.org/10.1080/02678292.2010.494412
  11. S.-Y. Jeong, H.-G. Kim, H.-S. Jung, and Y.-D. Ma, Chemical Materials (Dankook University), 6, 27 (2009).
  12. P. A. Henderson, A. G. Cook, and C. T. Imrie, Liq. Cryst., 31, 1427 (2004). https://doi.org/10.1080/02678290412331298067
  13. S. K. Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, and C. V. Yelamaggad, J. Appl. Phys., 92, 838 (2002). https://doi.org/10.1063/1.1488244
  14. G. S. Attard, S. Garnett, C. G. Hickman, C. T. Imrie, and L. Taylor, Liq. Cryst., 7, 495 (1990). https://doi.org/10.1080/02678299008033826
  15. A. E. Blatch and G. R. Luckhurst, Liq. Cryst., 27, 775 (2000). https://doi.org/10.1080/026782900202264
  16. T. Niori, S. Adachi, and J. Watanabe, Liq. Cryst., 19, 139 (1995). https://doi.org/10.1080/02678299508036731
  17. M. Moriyama and N. Tamaoki, Chem. Lett., 1142 (2001).
  18. V. A. Mallia and N. Tamaoki, Chem. Mater., 15, 3237 (2003). https://doi.org/10.1021/cm034127+
  19. V. A. Mallia and N. Tamaoki, J. Mater. Chem., 13, 219 (2003). https://doi.org/10.1039/b210541a
  20. N. Tamaoki, Y. Aoki, M. Moriyama, and M. Kidowaki, Chem. Mater., 15, 719 (2003). https://doi.org/10.1021/cm020234c
  21. S. Kumaresan, V. A. Mallia, Y. Kida, and N. Tamaoki, J. Mater. Res., 20, 3431 (2005). https://doi.org/10.1557/jmr.2005.0426
  22. C. V. Yelamaggad, G. Shanker, U. S. Hiremath, and S. Krishna Prasad, J. Mater. Chem., 18, 2927 (2008). https://doi.org/10.1039/b804579h
  23. C. Wu, Mater. Lett., 61, 1380 (2007). https://doi.org/10.1016/j.matlet.2006.07.035
  24. S.-W. Cha, J.-I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 26, 1325 (1999). https://doi.org/10.1080/026782999203995
  25. J.-W. Lee, Y. Park, J.-I. Jin, M. F. Achard, and F. Hardouin, J. Mater. Chem., 13, 1367 (2003). https://doi.org/10.1039/b211932c
  26. K.-N. Kim, E.-D. Do, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 32, 229 (2005). https://doi.org/10.1080/02678290412331329305
  27. W.-K. Lee, K.-N. Kim, M. F. Achard, and J.-I. Jin, J. Mater. Chem., 16, 2289 (2006). https://doi.org/10.1039/b516141j
  28. K. Zygadlo, D. Dardas, K. Nowicka, J. Hofmann, and Z, Galewski, Mol. Cryst. Liq. Cryst., 509, 283 (2009).
  29. B.-K. So, H.-J. Kim, S.-M. Lee, H.-H. Song, and J.-H. Park, Dyes and Pigments, 70, 38 (2006). https://doi.org/10.1016/j.dyepig.2005.04.006
  30. B. Bai, H. Wang, H. Xin, J. Shi, B. Long, and M. Li, J. Phys. Org. Chem., 20, 589 (2007). https://doi.org/10.1002/poc.1211
  31. B. Bai, H. Wang, S. Qu, F. Li, Z. Yu, B. Long, and M. Li, Liq. Cryst., 35, 793 (2008). https://doi.org/10.1080/02678290802187264
  32. A. A. Salisu, M. Z. Ab. Rahman, S. Silong, M. Bin Ahmad, and M. R. Lutfor, Mol. Cryst. Liq. Cryst., 509, 134 (2009).
  33. K. Ichimura, Chem. Rev., 100, 1847 (2000). https://doi.org/10.1021/cr980079e
  34. J.-C. Dubois, P. L. Barny, M. Mauzac, and C. Noel, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 3, 207, Wiley-VCH, Weinheim-New York (1998).
  35. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003). https://doi.org/10.1016/S0079-6700(02)00086-2
  36. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, ed. C. B. McArdle, 30, Chapman and Hall, New York (1989).
  37. A. Natansohn and P. Rochon, Chem. Rev., 102, 4139 (2002). https://doi.org/10.1021/cr970155y
  38. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromoleules, 26, 545 (1993). https://doi.org/10.1021/ma00055a021
  39. M. Li, E. Zhou, J. Xu, and X. Chen, J. Appl. Polym. Sci., 60, 2185 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2185::AID-APP16>3.0.CO;2-6
  40. M. Ratloh, J. Stumpe, L. Stachanov, S. Kostromin, and V. Shibaev, Mol. Cryst. Liq. Cryst., 352, 149 (2000). https://doi.org/10.1080/10587250008023172
  41. A. A. Craig, I. Winchester, P. C. Madden, P. Larcey, I. W. Hamley, and C. T. Imrie, Polymer, 39, 1197 (1998). https://doi.org/10.1016/S0032-3861(97)00394-7
  42. J-H. Liu and C.-D. Hsieh, J. Appl. Polym. Sci., 99, 2443 (2006). https://doi.org/10.1002/app.22776
  43. X. Li, R. Wen, Y. Zhang, L. Zhu, B. Zhang, and H. Zhang, J. Mater. Chem., 19, 236 (2009). https://doi.org/10.1039/b812291a
  44. Z. Zheng, J. Xu, Y. Sun, J. Zhou, B. Chen, Q. Zhang, and K. Wang, J. Polym. Sci. Part A: Polm. Chem., 44, 3210 (2006). https://doi.org/10.1002/pola.21398
  45. C. Cojocariu and P. Rochon, Macromolecules, 38, 9526 (2005). https://doi.org/10.1021/ma051455h
  46. S. Freiberg, F. Langugne-Labarthet, P. Rochon, and A. Natansohn, Macromoleules, 36, 2680 (2003). https://doi.org/10.1021/ma021384b
  47. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 32, 489 (2008).
  48. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 19, 504 (2008).
  49. S.-Y. Jeong, D.-J. Hwang, and Y.-D. Ma, Appl. Chem. Eng., 21, 230 (2010).
  50. S.-Y. Jeong, J.-Y. Lee, and Y.-D. Ma, Polymer (Korea), 33, 297 (2009).
  51. U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, Mol. Cryst. Liq. Cryst., 454, 235 (2006).
  52. G. W. Gray, Liquid Crystals and Plastic Crystals, eds. G. W. Gray and P. A. Winsor, 1, 103, Ellis Harwood, Chichester, London (1974).
  53. G. W. Gray, The Molecular Physics of Liquid Crystals, eds. G. R. Luckhurst and G. W. Gray, 1, Academic Press, New York (1979).
  54. Ya. S. Freidzon and V. P. Shibaev, Liquid-Crystal Polymers, ed. N. A. Plate, 251, Plenum Press, New York and London (1993).
  55. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromoleules, 26, 3803 (1993). https://doi.org/10.1021/ma00067a013
  56. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 30, 35 (2006).
  57. T. Tanaka, T. Fukuda, J. Watanabe, and T. Miyamoto, Macromolecules, 28, 3394 (1995). https://doi.org/10.1021/ma00113a045
  58. W. Maier and A. Saupe, Z. Naturf, 14a, 882 (1959)
  59. W, Maier and A. Saupe, Z. Naturf, 15a, 287 (1960).
  60. L. Onsager, Ann. N. Y. Acad. Sci., 51, 627 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
  61. G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals, Fundamentals, 245, Springer-Verlag, Berlin Heidelberg (1988).
  62. S. Chandrasekhar, Liquid Crystals, 17, Cambridge University Press (1992).
  63. W. H. de Jeu, J. van der Veen, and W. J. A. Goosens, Solid State Commun., 12, 405 (1973). https://doi.org/10.1016/0038-1098(73)90783-7
  64. V. Percec, A. D. Asandei, D. H. Hill, and D. Crawford, Macromoleules, 32, 2597 (1999). https://doi.org/10.1021/ma9900129
  65. A. A. Craig and C. T. Imrie, J. Mater. Chem., 4, 1705 (1994). https://doi.org/10.1039/jm9940401705
  66. F. Dowell and D. E. Martie, J. Chem. Phys., 68, 1094 (1979).
  67. P. A. Henderson, O. Niemeyer, and C. T. Imrie, Liq. Cryst., 28, 463 (2001). https://doi.org/10.1080/02678290010007558
  68. A. E. Blatch, I. D. Fletcher, and G. R. Luckhurst, J. Mater. Chem., 7, 9 (1997). https://doi.org/10.1039/a602980i