악성 폐종양의 사이버나이프 방사선수술 후 방사선 폐손상의 CT 소견

Radiation-Induced Pulmonary Injury after Cyberknife Radiosurgery for Lung Malignancy: CT Appearance

  • 서재영 (건양대학교 의과대학 영상의학과학교실) ;
  • 조영준 (건양대학교 의과대학 영상의학과학교실) ;
  • 이선영 (건양대학교 의과대학 방사선종양학과학교실) ;
  • 김금원 (건양대학교 의과대학 영상의학과학교실) ;
  • 황철목 (건양대학교 의과대학 영상의학과학교실) ;
  • 김대호 (건양대학교 의과대학 영상의학과학교실) ;
  • 김호준 (건양대학교 의과대학 영상의학과학교실)
  • Seo, Jae-Young (Department of Radiology, Konyang University College of Medicine) ;
  • Cho, Young-Jun (Department of Radiology, Konyang University College of Medicine) ;
  • Lee, Sun-Young (Department of Radiation Oncology, Konyang University College of Medicine) ;
  • Kim, Keum-Won (Department of Radiology, Konyang University College of Medicine) ;
  • Hwang, Cheol-Mok (Department of Radiology, Konyang University College of Medicine) ;
  • Kim, Dae-Ho (Department of Radiology, Konyang University College of Medicine) ;
  • Kim, Ho-Jun (Department of Radiology, Konyang University College of Medicine)
  • 발행 : 2011.09.01

초록

목적: 악성 폐종양으로 사이버나이프 방사선수술을 받은 환자들에서 방사선 폐손상의 CT 소견에 대해 분석하고자 하였다. 대상과 방법: 본원에서 사이버나이프 방사선수술을 시행 받은 34명의 환자의 39개 악성 폐종양을 대상으로 하였다. 모든 환자는 총방사선량 24~60 Gy(평균 50 Gy)를 3회 분할하여 치료하였다. 방사선폐렴의 CT 소견은 방사선 조사부위 폐의 간유리 음영과 경화의 존재로 평가하였고, 방사선섬유증은 경화, 견인성 기관지확장증 그리고 폐용적 감소의 여부로 평가하였다. 또한 추적 CT에서 방사선폐렴의 위치와 발생하는 부위의 최소 방사선량을 각각 평가하였다. 결과: 방사선폐렴과 방사선섬유증은 각각 95%(37/39)와 90%(26/29)에서 발생하였다. 방사선폐렴의 CT 소견은 간유리 음영과 경화의 혼합음영이 20예(54%), 간유리음영이 7예(19%), 반점상경화 6예(16%), 미만성경화 4예(11%)였다. 방사선폐렴은 종양에 대해 동심성이 30예(81%)로 편심성 7예(19%)에 비해 많이 발생하였다. 방사선폐렴이 발생한 최소 방사선량은 13~38 Gy(평균 21 Gy)였다. 방사선섬유증은 변형된 고식적 형태의 섬유화가 17예(65%)로 가장 많이 발생하였고, 종양 유사 섬유화와 반흔 유사 섬유화가 각각 7예(27%), 2예(8%)에서 관찰되었다. 결론: 사이버나이프 방사선수술 후 방사선폐렴은 종양 주위에서 동심성으로 많이 발생하였다. 방사선섬유증 중 종양 유사 형태의 섬유화는 때때로 재발성 종양과 감별이 어려우므로 방사선 폐손상의 CT 소견에 대해 아는 것이 재발성 종양과 방사선 폐손상을 감별하는 데 도움이 될 수 있다.

Purpose: To evaluate the CT appearance of radiation-induced pulmonary injury in patients who have undergone cyberknife radiosurgery for lung malignancy. Materials and Methods: Thirty-four patients with 39 malignant lung tumors who underwent cyberknife radiosurgery were enrolled for evaluation. A total of 24-60 Gy was administered in 3 fractions. We evaluated the CT appearance of radiation pneumonitis and radiation fibrosis. We also evaluated the location of radiation pneumonitis and the minimal dose which causes radiation pneumonitis. Results: Radiation pneumonitis and radiation fibrosis occurred in 95% and 90% of cases, respectively. CT patterns of radiation pneumonitis demonstrated 20 cases (54%) as ground glass opacities (GGO). GGO included only 7 cases (19%), while 6 cases (16%) had patchy consolidations and 4 cases (11%) were diffuse consolidations, respectively. Radiation pneumonitis demonstrated 30 cases (81%) as concentric patterns surrounding the tumor, while 7 cases (19%) included the eccentric patterns. The radiation pneumonitis appeared within the 13-38 Gy (mean 21 Gy). CT findings of radiation fibrosis demonstrated as the modified conventional patterns, which decreased to 17 cases (65%), while 7 cases (27%) had mass-like patterns and 2 cases (8%) had scar-like patterns, respectively. Conclusion: Radiation pneumonitis after cyberknife radiosurgery commonly develops as concentric patterns surrounding a tumor. The mass-like pattern of radiation fibrosis was sometimes difficult to distinguish from tumor recurrence. Thus, knowledge of the CT finding of radiation-induced lung injury might be helpful in distinguishing pulmonary changes from tumor recurrence.

키워드

참고문헌

  1. Aoki T, Nagata Y, Negoro Y, Takayama K, Mizowaki T, Kokubo M, et al. Evaluation of lung injury after three-dimensional conformal stereotactic radiation therapy for solitary lung tumors: CT appearance. Radiology 2004;230: 101-108 https://doi.org/10.1148/radiol.2301021226
  2. Bucci MK, Bevan A, Roach M 3rd. Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin 2005;55:117-134 https://doi.org/10.3322/canjclin.55.2.117
  3. Koenig TR, Munden RF, Erasmus JJ, Sabloff BS, Gladish GW, Komaki R, et al. Radiation injury of the lung after three-dimensional conformal radiation therapy. AJR Am J Roentgenol 2002;178:1383-1388 https://doi.org/10.2214/ajr.178.6.1781383
  4. Park HJ, Kim KJ, Park SH, Kay CS, Oh JS. Early CT findings of tomotherapy-induced radiation pneumonitis after treatment of lung malignancy. AJR Am J Roentgenol 2009;193: W209-W213 https://doi.org/10.2214/AJR.08.2298
  5. Kim GJ, Shim SJ, Kim JH, Min CK, Chung WK. Evaluation of Real-time Measurement Liver Tumor's Movement and SynchronyTM System's Accuracy of Radiosurgery using a Robot CyberKnife. J Korean Soc Ther Radiol Oncol 2008; 26:263-270 https://doi.org/10.3857/jkstro.2008.26.4.263
  6. Chai GY, Lim YK, Kang KM, Jeong BG, Ha IB, Park KB, et al. Comparison of Three- and Four-dimensional Robotic Radiotherapy Treatment Plans for Lung Cancers. J Korean Soc Ther Radiol Oncol 2010;28:238-248 https://doi.org/10.3857/jkstro.2010.28.4.238
  7. Sotiropoulou E, Stathochristopoulou I, Stathopoulos K, Verigos K, Salvaras N, Thanos L. CT-guided fiducial placement for cyberknife stereotactic radiosurgery: an initial experience. Cardiovasc Intervent Radiol 2010;33:586-589 https://doi.org/10.1007/s00270-009-9748-7
  8. Baba F, Shibamoto Y, Tomita N, Ikeya-Hashizume C, Oda K, Ayakawa S, et al. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results. Radiat Oncol 2009;4:15 https://doi.org/10.1186/1748-717X-4-15
  9. van der Voort van Zyp NC, Prevost JB, Hoogeman MS, Praag J, van der Holt B, Levendag PC, et al. Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 2009; 91:296-300 https://doi.org/10.1016/j.radonc.2009.02.011
  10. Haasbeek CJ, Lagerwaard FJ, de Jaeger K, Slotman BJ, Senan S. Outcomes of stereotactic radiotherapy for a new clinical stage I lung cancer arising postpneumonectomy. Cancer 2009;115:587-594 https://doi.org/10.1002/cncr.24068
  11. Inoue T, Shimizu S, Onimaru R, Takeda A, Onishi H, Nagata Y, et al. Clinical outcomes of stereotactic body radiotherapy for small lung lesions clinically diagnosed as primary lung cancer on radiologic examination. Int J Radiat Oncol Biol Phys 2009;75:683-687 https://doi.org/10.1016/j.ijrobp.2008.11.026
  12. Uematsu M, Shioda A, Suda A, Fukui T, Ozeki Y, Hama Y, et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys 2001;51: 666-670 https://doi.org/10.1016/S0360-3016(01)01703-5
  13. Brown WT, Wu X, Amendola B, Perman M, Han H, Fayad F, et al. Treatment of early non-small cell lung cancer, stage IA, by image-guided robotic stereotactic radioablation--CyberKnife. Cancer J 2007;13:87-94 https://doi.org/10.1097/PPO.0b013e31803c5415
  14. Kimura T, Matsuura K, Murakami Y, Hashimoto Y, Kenjo M, Kaneyasu Y, et al. CT appearance of radiation injury of the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) for lung cancers: are patients with pulmonary emphysema also candidates for SBRT for lung cancers? Int J Radiat Oncol Biol Phys 2006;66:483-491 https://doi.org/10.1016/j.ijrobp.2006.05.008
  15. Takeda T, Takeda A, Kunieda E, Ishizaka A, Takemasa K, Shimada K, et al. Radiation injury after hypofractionated stereotactic radiotherapy for peripheral small lung tumors: serial changes on CT. AJR Am J Roentgenol 2004;182: 1123-1128 https://doi.org/10.2214/ajr.182.5.1821123
  16. Collins BT, Vahdat S, Erickson K, Collins SP, Suy S, Yu X, et al. Radical cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer. J Hematol Oncol 2009;2:1 https://doi.org/10.1186/1756-8722-2-1
  17. Choi YW, Munden RF, Erasmus JJ, Park KJ, Chung WK, Jeon SC, et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics 2004;24:985-997; discussion 998 https://doi.org/10.1148/rg.244035160
  18. Movsas B, Raffin TA, Epstein AH, Link CJ Jr. Pulmonary radiation injury. Chest 1997;111:1061-1076 https://doi.org/10.1378/chest.111.4.1061
  19. Abratt RP, Morgan GW. Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer 2002;35: 103-109 https://doi.org/10.1016/S0169-5002(01)00334-8
  20. Kim TH, Cho KH, Pyo HR, Lee JS, Zo JI, Lee DH, et al. Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology 2005;235:208-215 https://doi.org/10.1148/radiol.2351040248
  21. Park KJ, Chung JY, Chun MS, Suh JH. Radiation-induced lung disease and the impact of radiation methods on imaging features. Radiographics 2000;20:83-98 https://doi.org/10.1148/radiographics.20.1.g00ja0483