참고문헌
- Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45-51. https://doi.org/10.1038/36285
- Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829-1833. https://doi.org/10.1126/science.1112766
- Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A 2007;104:19796-19801. https://doi.org/10.1073/pnas.0709805104
- Imura A, Iwano A, Tohyama O, et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 2004;565:143-147. https://doi.org/10.1016/j.febslet.2004.03.090
- Bloch L, Sineshchekova O, Reichenbach D, et al. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett 2009;583:3221-3224. https://doi.org/10.1016/j.febslet.2009.09.009
- Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006;281:6120-6123. https://doi.org/10.1074/jbc.C500457200
- Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006;444:770-774. https://doi.org/10.1038/nature05315
- Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 2006;15:437-441. https://doi.org/10.1097/01.mnh.0000232885.81142.83
- Hsieh CC, Kuro-o M, Rosenblatt KP, Brobey R, Papaconstantinou J. The ASK1-Signalosome regulates p38 MAPK activity in response to levels of endogenous oxidative stress in the Klotho mouse models of aging. Aging (Albany NY) 2010;2:597-611.
- Kuro-o M. Klotho and aging. Biochim Biophys Acta 2009;1790:1049-1058. https://doi.org/10.1016/j.bbagen.2009.02.005
- Kuro-o M. Klotho. Pflugers Arch 2010;459:333-343. https://doi.org/10.1007/s00424-009-0722-7
- Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 2005;280:38029-38034. https://doi.org/10.1074/jbc.M509039200
- Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 2008;237:18-27. https://doi.org/10.1002/dvdy.21388
- ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345-348. https://doi.org/10.1038/81664
- White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001;60:2079-2086. https://doi.org/10.1046/j.1523-1755.2001.00064.x
- Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008;118:3820-3828. https://doi.org/10.1172/JCI36479
- Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004;113:561-568.
- Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 2006;20:720-722.
- Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003;17:2393-2403. https://doi.org/10.1210/me.2003-0048
- Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 2002;143:683-689. https://doi.org/10.1210/en.143.2.683
- Tomiyama K, Maeda R, Urakawa I, et al. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc Natl Acad Sci U S A 2010;107:1666-1671. https://doi.org/10.1073/pnas.0913986107
- Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 2007;27:3417-3428. https://doi.org/10.1128/MCB.02249-06
- Berndt T, Kumar R. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology (Bethesda) 2009;24:17-25. https://doi.org/10.1152/physiol.00034.2008
- Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 2005;289:F8-F28. https://doi.org/10.1152/ajprenal.00336.2004
- Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 2007;69:341-359. https://doi.org/10.1146/annurev.physiol.69.040705.141729
- Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007;117:4003-4008.
- Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19:429-435.
- Saji F, Shiizaki K, Shimada S, et al. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol 2009;111:p59-p66.
- Lavi-Moshayoff V, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 2010;299:F882-F889. https://doi.org/10.1152/ajprenal.00360.2010
- John GB, Cheng CY, Kuro-o M. Role of Klotho in aging, phiosphate metabolism, and CKD. Am J Kidney Dis 2011 Apr 14 [Epub]. DOI: 10. 1053/j.ajkd.2010.12.027.
- Kuro-O M. Phosphate and klotho. Kidney Int Suppl 2011; (121):S20-S23.
- Stubbs JR, Liu S, Tang W, et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol 2007;18:2116-2124. https://doi.org/10.1681/ASN.2006121385
- Hesse M, Frohlich LF, Zeitz U, Lanske B, Erben RG. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol 2007;26:75-84. https://doi.org/10.1016/j.matbio.2006.10.003
- Ohnishi M, Nakatani T, Lanske B, Razzaque MS. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int 2009;75:1166-1172. https://doi.org/10.1038/ki.2009.24
- Morishita K, Shirai A, Kubota M, et al. The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc. J Nutr 2001;131:3182-3188.
- Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J 2010;24:3562-3571. https://doi.org/10.1096/fj.09-152488
- Stevens LA, Li S, Wang C, et al. Prevalence of CKD and comorbid illness in elderly patients in the United States: results from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis 2010;55(3 Suppl 2):S23-S33.
- Zoccali C, Kramer A, Jager KJ. Epidemiology of CKD in Europe: an uncertain scenario. Nephrol Dial Transplant 2010;25:1731-1733. https://doi.org/10.1093/ndt/gfq250
- Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G; Cholesterol And Recurrent Events Trial Investigators. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 2005;112:2627-2633. https://doi.org/10.1161/CIRCULATIONAHA.105.553198
- Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol 2001;12:2131-2138.
- Gutierrez O, Isakova T, Rhee E, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005;16:2205-2215. https://doi.org/10.1681/ASN.2005010052
- National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003;42(4 Suppl 3):S1-S201.
- Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008;359:584-592. https://doi.org/10.1056/NEJMoa0706130
- Koh N, Fujimori T, Nishiguchi S, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 2001;280:1015-1020. https://doi.org/10.1006/bbrc.2000.4226
- El-Abbadi M, Giachelli CM. Arteriosclerosis, calcium phosphate deposition and cardiovascular disease in uremia: current concepts at the bench. Curr Opin Nephrol Hypertens 2005;14:519-524. https://doi.org/10.1097/01.mnh.0000168335.29381.23
- Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108:2154-2169. https://doi.org/10.1161/01.CIR.0000095676.90936.80
- Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-1305. https://doi.org/10.1056/NEJMoa041031
- Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011;22:124-136. https://doi.org/10.1681/ASN.2009121311
- Hruska KA, Choi ET, Memon I, Davis TK, Mathew S. Cardiovascular risk in chronic kidney disease (CKD): the CKD-mineral bone disorder (CKD-MBD). Pediatr Nephrol 2010;25:769-778. https://doi.org/10.1007/s00467-009-1337-0
- Meyer KB, Levey AS. Controlling the epidemic of cardiovascular disease in chronic renal disease: report from the National Kidney Foundation Task Force on cardiovascular disease. J Am Soc Nephrol 1998;9(12 Suppl):S31-S42.
- Shuto E, Taketani Y, Tanaka R, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol 2009;20:1504-1512. https://doi.org/10.1681/ASN.2008101106
- Tohyama O, Imura A, Iwano A, et al. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem 2004;279:9777-9784.
- Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005;310:490-493. https://doi.org/10.1126/science.1114245
- Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A 2008;105:9805-9810. https://doi.org/10.1073/pnas.0803223105
- Mensenkamp AR, Hoenderop JG, Bindels RJ. Recent advances in renal tubular calcium reabsorption. Curr Opin Nephrol Hypertens 2006;15:524-529. https://doi.org/10.1097/01.mnh.0000242179.38739.fb
- Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol 2009;76:38-46. https://doi.org/10.1124/mol.109.055780
- Hu MC, Shi M, Zhang J, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 2010;24:3438-3450. https://doi.org/10.1096/fj.10-154765
- Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 2007;317:803-806. https://doi.org/10.1126/science.1143578
-
Doi S, Zou Y, Togao O, et al. Klotho inhibits transforming growth factor-b1 (TGF-
${\beta}1$ ) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 2011;286:8655-8665. https://doi.org/10.1074/jbc.M110.174037 - Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell 2005;120:449-460. https://doi.org/10.1016/j.cell.2005.02.002
- Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007;293:L525-L534. https://doi.org/10.1152/ajplung.00163.2007
- Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871-890. https://doi.org/10.1016/j.cell.2009.11.007
- Ito S, Kinoshita S, Shiraishi N, et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 2000;98:115-119. https://doi.org/10.1016/S0925-4773(00)00439-1
- Ito S, Fujimori T, Hayashizaki Y, Nabeshima Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim Biophys Acta 2002;1576:341-345. https://doi.org/10.1016/S0167-4781(02)00281-6
- Ogawa Y, Kurosu H, Yamamoto M, et al. bKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 2007;104:7432-7437. https://doi.org/10.1073/pnas.0701600104
- Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007;282:26687-26695. https://doi.org/10.1074/jbc.M704165200
- Fon Tacer K, Bookout AL, Ding X, et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 2010;24:2050-2064. https://doi.org/10.1210/me.2010-0142
- Ogawa W, Matozaki T, Kasuga M. Role of binding proteins to IRS-1 in insulin signalling. Mol Cell Biochem 1998;182:13-22. https://doi.org/10.1023/A:1006862807598
- Kuro-o M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab 2008;19:239-245. https://doi.org/10.1016/j.tem.2008.06.002
- Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005;2:217-225. https://doi.org/10.1016/j.cmet.2005.09.001
- Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 2005;115:2202-2208. https://doi.org/10.1172/JCI23076
- Yu C, Wang F, Kan M, et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 2000;275:15482-15489. https://doi.org/10.1074/jbc.275.20.15482
- Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007;5:415-425. https://doi.org/10.1016/j.cmet.2007.05.003
- Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 2008;8:77-83. https://doi.org/10.1016/j.cmet.2008.05.006
- Kuro-o M. A potential link between phosphate and aging: lessons from Klotho-deficient mice. Mech Ageing Dev 2010;131:270-275. https://doi.org/10.1016/j.mad.2010.02.008
피인용 문헌
- Dehydration: a new modulator of klotho expression vol.301, pp.4, 2011, https://doi.org/10.1152/ajprenal.00412.2011
- Pathophysiology of the aging kidney and therapeutic interventions vol.35, pp.12, 2011, https://doi.org/10.1038/hr.2012.159
- Impact of serum calcium and phosphate on coronary atherosclerosis detected by cardiac computed tomography vol.33, pp.22, 2012, https://doi.org/10.1093/eurheartj/ehs152
- Age-Associated Molecular Changes in the Kidney in Aged Mice vol.2012, pp.None, 2011, https://doi.org/10.1155/2012/171383
- Aging biology: a new frontier for drug discovery vol.7, pp.3, 2011, https://doi.org/10.1517/17460441.2012.660144
- Small-molecule Klotho enhancers as novel treatment of neurodegeneration vol.4, pp.13, 2012, https://doi.org/10.4155/fmc.12.134
- The effects of oxygen tension and antiaging factor Klotho on Wnt signaling in nucleus pulposus cells vol.14, pp.3, 2011, https://doi.org/10.1186/ar3830
- Biochemical Markers of Aging for Longitudinal Studies in Humans vol.35, pp.1, 2011, https://doi.org/10.1093/epirev/mxs011
- Deranged epidermal differentiation in kl/kl mouse and the effects of βKlotho siRNA on the differentiation of HaCaT cells vol.22, pp.11, 2011, https://doi.org/10.1111/exd.12258
- Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms vol.55, pp.4, 2013, https://doi.org/10.1111/jpi.12090
- ‘Time and Time Again’: Oscillatory and Longitudinal Time Patterns in Dialysis Patients vol.35, pp.6, 2011, https://doi.org/10.1159/000340022
- Sepsis-Induced Hypercytokinemia and Lymphocyte Apoptosis in Aging-Accelerated Klotho Knockout Mice vol.39, pp.3, 2011, https://doi.org/10.1097/shk.0b013e3182845445
- Altered regulation of cytosolic Ca2+ concentration in dendritic cells from klotho hypomorphic mice vol.305, pp.1, 2011, https://doi.org/10.1152/ajpcell.00355.2012
- Two cases of nevus sebaceous accompanying secondary tumors with βKlotho expression vol.41, pp.2, 2011, https://doi.org/10.1111/1346-8138.12371
- Reduced Klotho is associated with the presence and severity of coronary artery disease vol.100, pp.1, 2014, https://doi.org/10.1136/heartjnl-2013-304746
- The renin-angiotensin system and aging in the kidney vol.29, pp.3, 2014, https://doi.org/10.3904/kjim.2014.29.3.291
- Vitamin D and chronic kidney disease vol.29, pp.4, 2014, https://doi.org/10.3904/kjim.2014.29.4.416
- FGF23 in Acute and Chronic Illness vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/358086
- Klotho Prevents NFκB Translocation and Protects Endothelial Cell From Senescence Induced by Uremia vol.70, pp.10, 2011, https://doi.org/10.1093/gerona/glu170
- βKlotho expression is reduced in human non‐melanoma skin cancer vol.54, pp.10, 2015, https://doi.org/10.1111/ijd.12924
- Klotho: a tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma vol.96, pp.2, 2011, https://doi.org/10.1038/labinvest.2015.86
- Cognitive Changes in Chronic Kidney Disease and After Transplantation vol.100, pp.4, 2016, https://doi.org/10.1097/tp.0000000000000968
- Expression of klotho and β‐catenin in esophageal squamous cell carcinoma, and their clinicopathological and prognostic significance vol.29, pp.3, 2011, https://doi.org/10.1111/dote.12289
- Deficiency in the anti‐aging gene Klotho promotes aortic valve fibrosis through AMPK α‐mediated activation of RUNX 2 vol.15, pp.5, 2011, https://doi.org/10.1111/acel.12494
- Association of Serum Phosphate Levels and Anemia in Critically Ill Surgical Patients vol.41, pp.6, 2017, https://doi.org/10.1177/0148607115626415
- Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice vol.8, pp.9, 2011, https://doi.org/10.18632/oncotarget.14933
- Induction of anti-aging gene klotho with a small chemical compound that demethylates CpG islands vol.8, pp.29, 2011, https://doi.org/10.18632/oncotarget.18608
- Neuroprotective Effect of Ligustilide through Induction of α-Secretase Processing of Both APP and Klotho in a Mouse Model of Alzheimer’s Disease vol.9, pp.None, 2011, https://doi.org/10.3389/fnagi.2017.00353
- Vitamin D deficiency is associated with increased risk of bacterial infections after kidney transplantation vol.32, pp.3, 2011, https://doi.org/10.3904/kjim.2015.214
- FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice vol.232, pp.3, 2011, https://doi.org/10.1002/jcp.25458
- The SAMP8 mouse for investigating memory and the role of insulin in the brain vol.94, pp.None, 2011, https://doi.org/10.1016/j.exger.2016.12.009
- Epigenetic suppression of the anti-aging gene KLOTHO in human prostate cancer cell lines vol.21, pp.4, 2011, https://doi.org/10.1080/19768354.2017.1336112
- Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS pathways vol.16, pp.None, 2011, https://doi.org/10.1186/s12944-017-0447-0
- The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases vol.2018, pp.None, 2011, https://doi.org/10.1155/2018/5171945
- Maintenance of Kidney Metabolic Homeostasis by PPAR Gamma vol.19, pp.7, 2011, https://doi.org/10.3390/ijms19072063
- α-Klotho protein in neurodegenerative and mental diseases vol.119, pp.1, 2011, https://doi.org/10.17116/jnevro201911901180
- Role of Klotho in Chronic Calcineurin Inhibitor Nephropathy vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/1825018
- Adherence to the Mediterranean diet, dietary factors, and S-Klotho plasma levels in sedentary middle-aged adults vol.119, pp.None, 2019, https://doi.org/10.1016/j.exger.2019.01.019
- The relationship between serum FGF-23 concentration and insulin resistance, prediabetes and dyslipidemia in obese children and adolescents vol.32, pp.7, 2019, https://doi.org/10.1515/jpem-2018-0507
- The relationship between serum FGF-23 concentration and insulin resistance, prediabetes and dyslipidemia in obese children and adolescents vol.32, pp.7, 2019, https://doi.org/10.1515/jpem-2018-0507
- Re: “Decreased Levels of Anti-Aging Klotho in Obstructive Sleep Apnea” by Pákó et al. (Rejuvenation Res 2019 [Epub ahead of print]; DOI: 10.1089/rej.2019.2183) vol.22, pp.4, 2011, https://doi.org/10.1089/rej.2019.2244
- Association of basal metabolic rate and fuel oxidation in basal conditions and during exercise, with plasma S-klotho: the FIT-AGEING study vol.11, pp.15, 2019, https://doi.org/10.18632/aging.102100
- The interplay of Klotho with signaling pathway and microRNAs in cancers vol.120, pp.9, 2011, https://doi.org/10.1002/jcb.29022
- Klotho Deficiency Accelerates Stem Cells Aging by Impairing Telomerase Activity vol.74, pp.9, 2011, https://doi.org/10.1093/gerona/gly261
- The Klotho Variant rs36217263 Is Associated With Poor Response to Cardioselective Beta‐Blocker Therapy Among Filipinos vol.107, pp.1, 2011, https://doi.org/10.1002/cpt.1585
- Mechanistic target of rapamycin signaling in mouse models of accelerated aging vol.75, pp.1, 2020, https://doi.org/10.1093/gerona/glz059
- Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies vol.11, pp.None, 2011, https://doi.org/10.3389/fphar.2020.601325
- Association between serum levels of Klotho and inflammatory cytokines in cardiovascular disease: a case-control study vol.12, pp.2, 2011, https://doi.org/10.18632/aging.102734
- Z‐ligustilide: A review of its pharmacokinetics and pharmacology vol.34, pp.8, 2011, https://doi.org/10.1002/ptr.6662
- Klotho-HIV and Oxidative Stress: The Role of Klotho in Cardiovascular Disease Under HIV Infection-A Review vol.39, pp.9, 2011, https://doi.org/10.1089/dna.2020.5444
- Enhanced Klotho availability protects against cardiac dysfunction induced by uraemic cardiomyopathy by regulating Ca 2+ handling vol.177, pp.20, 2011, https://doi.org/10.1111/bph.15235
- Expression of Phosphatonin-Related Genes in Sheep, Dog and Horse Kidneys Using Quantitative Reverse Transcriptase PCR vol.10, pp.10, 2020, https://doi.org/10.3390/ani10101806
- The Ability of Nutrition to Mitigate Epigenetic Drift: A Novel Look at Regulating Gene Expression vol.67, pp.6, 2011, https://doi.org/10.3177/jnsv.67.359
- Constitutive Expression of TERT Enhances β-Klotho Expression and Improves Age-Related Deterioration in Early Bovine Embryos vol.22, pp.10, 2021, https://doi.org/10.3390/ijms22105327
- Tacrolimus Decreases Cognitive Function by Impairing Hippocampal Synaptic Balance: a Possible Role of Klotho vol.58, pp.11, 2011, https://doi.org/10.1007/s12035-021-02499-3
- Klotho inhibits neuronal senescence in human brain organoids vol.7, pp.1, 2011, https://doi.org/10.1038/s41514-021-00070-x