DOI QR코드

DOI QR Code

The Effect of Temperature on the Stable Region of Magnesium Ion in Aqueous System

수중 마그네슘이온의 안정영역 변화에 대한 온도효과

  • Kim, Hee-Jin (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Dong-Su (Department of Environmental Science and Engineering, Ewha Womans University)
  • 김희진 (이화여자대학교 환경공학과) ;
  • 김동수 (이화여자대학교 환경공학과)
  • Received : 2011.02.24
  • Accepted : 2011.06.11
  • Published : 2011.07.30

Abstract

Magnesium is one of the abundant natural resources in the earth crust and seawater, which is directly related to various organisms activities interconnecting with water-rock system. In aqueous system, magnesium is known to predominantly exist in the form of $Mg^{2+}$ ion which is verified in its $E_h-pH$ diagram. When it is at equilibrium in aqueous system, temperature takes an essential role to complete equilibrium states. This study represents the change of the stable region of magnesium ion according to temperature, and how the consequences would affect aquatic organisms. It was revealed that there is a noticeable tendency shrinking the stable region of magnesium ion in a diagram as temperature increases, and as a result, aquatic bio-species presumably have difficulties to absorb the nutrient. Also, it was considered that the water system would be acidified by decreasing alkalinity.

Keywords

References

  1. 오훈일, 이형주, 문태화, 노봉수, 김석중(2008). 식품화학, 수학사.
  2. 박병각(1994). 물리화학, 탐구당.
  3. Albarede, F. (2003). Geochemistry, Cambridge University Press, UK.
  4. Atkins, P. and Paula, J. (1978). Physical Chemistry, Oxford University Press, UK
  5. Berman, R. G., and Brown, T. H. (1985). Heat capacities of minerals in the system $Na_{2}O-K_{2}O-CaO-MgO-FeO-Fe_{2}O_{3}-Al_{3}O_{3}-SiO_{2}-TiO_{2}-H_{2}O-CO_{2}$; Representation, estimation, and high temperature extrapolation. Contributions to Mineralogy and Petrology, 89, pp. 168-183. https://doi.org/10.1007/BF00379451
  6. Beverskog, B. and Puigdomenech, I. (1996). Revised Pourbaix diagrams for iron at $25-300^{\circ}C$. Corrosion Science, 38(12), pp. 2121-2135. https://doi.org/10.1016/S0010-938X(96)00067-4
  7. Beverskog, B. and Puigdomenech, I. (1997a). Revised pourbaix diagrams for chromium at $25-300{^{\circ}C}$. Corrosion Science, 39(1), pp. 43-57. https://doi.org/10.1016/S0010-938X(97)89244-X
  8. Beverskog, B. and Puigdomenech, I. (1997b). Revised pourbaix diagrams for nickel at $25-300^{\circ}C$. Corrosion Science, 39(5), pp. 969-980. https://doi.org/10.1016/S0010-938X(97)00002-4
  9. Beverskog, B. and Puigdomenech, I. (1997c). Revised pourbaix diagrams for zinc at $25-300^{\circ}C$. Corrosion Science, 39(1), pp. 107-114. https://doi.org/10.1016/S0010-938X(97)89246-3
  10. Chena, J., Dong, J., Wanga, J., Hana, E., and Kea, W. (2008). Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution. Corrosion Science, 50, pp. 3610-3614. https://doi.org/10.1016/j.corsci.2008.09.013
  11. Chivot, J., Mendoza, L., Mansour, C., Pauporte, T., and Cassir, M. (2008). New insight in the behaviour of Co-$H_2O$ system at $25-150^{\circ}C$ based on revised Pourbaix diagrams. Corrosion Science, 50, pp. 62-69. https://doi.org/10.1016/j.corsci.2007.07.002
  12. CRC. (1990). Metal Ions in Biological Systems, H. Sigel and A. Sigel (eds.), 26, Marcel Dekker, New York.
  13. CRC. (2008). CRC Handbook of Chemistry and Physics, 89th edition, D. R. Lide et al. (eds.), CRC press, USA.
  14. Donnelley, R. R. and Sons Company (1992). Lange's Handbook of Chemistry, 4th edition. A. D. John (ed.), McGraw-Hill, New York.
  15. Fenton, D. E. (1995). Biocoordination Chemistry, Oxford University Press, UK.
  16. Holland, T. J. B. and Powell, R. (1998). An internally consistent thermodynamics dataset for phases of petrologic interest. Journal of Metamorph. Petrol, 16, pp. 309-343.
  17. Holland, T. J. B., Redfern, S. A. T., and Pawley, A. R. (1996). Volume behavior of hydrous minerals at high pressure and temperature; 1. Compressibilities of lawsonite, zoisite, clinosoisite, and diaspore. American Mineralogist, 81(3-4), pp. 341-348.
  18. Martin, J. H. and Knauer, G. A. (1973). Elemental composition of plankton. Geochimica et Cosmochimica Acta, 37(7), pp. 1639-1653. https://doi.org/10.1016/0016-7037(73)90154-3
  19. Mineralogical society of America geochemical society (MSA) (2009). Reviews in Mineralogy and Geochemistry, v. 70; Thermodynamics and Kinetics of Water-rock Interaction, H. O. Eric and S. Jacques (eds.), MSA, USA.
  20. NOAA (2010). http://www.osdpd.noaa.gov/data/sst/contour/global-100.c.gif/.
  21. Pawley, A. R., Redfern, S. A. T., and Holland, T. J. B. (1996). Volume behavior of hydrous minerals at high pressure and temperature; 1. Thermal expansion of lawsonite, zoisite, clinosoisite, and diaspore. American Mineralogist, 81(3-4), pp. 335-340.
  22. Smith, T. M. and Smith, R. L. (2005). Elements of Ecology, Pearson Education, USA.
  23. Taiz, L. and Zeiger, E. (2010). Plant Physiology, 5th ed., Sinauer Associates, Inc, USA.