Ideal Experimental Rat Models for Liver Diseases

  • Lee, Sang-Woo (Department of Surgery, Yonsei University College of Medicine) ;
  • Kim, Sung-Hoon (Department of Surgery, Yonsei University College of Medicine) ;
  • Min, Seon-Ok (Department of Surgery, Yonsei University College of Medicine) ;
  • Kim, Kyung-Sik (Department of Surgery, Yonsei University College of Medicine)
  • 발행 : 2011.05.30

초록

There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes.

키워드

참고문헌

  1. Blumberg BS, Fox RC. The Daedalus effect: changes in ethical questions relating to hepatitis B virus. Ann Intern Med 1985;102:390-394. https://doi.org/10.7326/0003-4819-102-3-390
  2. Mullen KD, McCullough AJ. Problems with animal models of chronic liver disease: suggestions for improvement in standardization. Hepatology 1989;9:500-503. https://doi.org/10.1002/hep.1840090326
  3. Fourneau I, Pirenne J, Roskams T, Yap SH. An improved model of acute liver failure based on transient ischemia of the liver. Arch Surg 2000;135:1183-1189. https://doi.org/10.1001/archsurg.135.10.1183
  4. Newsome PN, Plevris JN, Nelson LJ, Hayes PC. Animal models of fulminant hepatic failure: a critical evaluation. Liver Transpl 2000;6:21-31.
  5. Terblanche J, Hickman R. Animal models of fulminant hepatic failure. Dig Dis Sci 1991;36:770-774. https://doi.org/10.1007/BF01311235
  6. Hedrich HJ. Taxonomy and Stocks and strains. In The Laboratory Rat. 2nd ed. Amsterdam; Boston: Elsevier; 2006.
  7. Iyanagi T, Haniu M, Sogawa K, et al. Cloning and characterization of cDNA encoding 3-methylcholanthrene inducible rat mRNA for UDP-glucuronosyltransferase. J Biol Chem 1986;261:15607-15614.
  8. Terada K, Sugiyama T. The Long-Evans Cinnamon rat: an animal model for Wilson's disease. Pediatr Int 1999;41:414-418. https://doi.org/10.1046/j.1442-200x.1999.01089.x
  9. Takahashi M, Shumiya S, Maekawa A, Hayashi Y, Nagase S. High susceptibility of an analbuminemic congenic strain of rats with an F344 genetic background to induced bladder cancer and its possible mechanism. Jpn J Cancer Res 1988;79:705-709. https://doi.org/10.1111/j.1349-7006.1988.tb02226.x
  10. Cubero FJ, Arza E, Maganto P, et al. Expression of bilirubin UDP-glucuronosyltransferase (bUGT) throughout fetal development: intrasplenic transplantation into Gunn rats to correct enzymatic deficiency. Dig Dis Sci 2001;46:2762-2767. https://doi.org/10.1023/A:1012743916800
  11. Iyanagi T, Emi Y, Ikushiro S. Biochemical and molecular aspects of genetic disorders of bilirubin metabolism. Biochim Biophys Acta 1998;1407:173-184. https://doi.org/10.1016/S0925-4439(98)00044-1
  12. Kaufman SS, Wood RP, Shaw BW Jr, et al. Orthotopic liver transplantation for type I Crigler-Najjar syndrome. Hepatology 1986;6:1259-1262. https://doi.org/10.1002/hep.1840060606
  13. Sokal EM, Silva ES, Hermans D, et al. Orthotopic liver transplantation for Crigler-Najjar type I disease in six children. Transplantation 1995;60:1095-1098. https://doi.org/10.1097/00007890-199511270-00006
  14. Evans HM, Kelly DA, McKiernan PJ, Hubscher S. Progressive histological damage in liver allografts following pediatric liver transplantation. Hepatology 2006;43:1109-1117. https://doi.org/10.1002/hep.21152
  15. Chowdhury JR, Kondapalli R, Chowdhury NR. Gunn rat: a model for inherited deficiency of bilirubin glucuronidation. Adv Vet Sci Comp Med 1993;37:149-173.
  16. Yamada T, Agui T, Suzuki Y, Sato M, Matsumoto K. Inhibition of the copper incorporation into ceruloplasmin leads to the deficiency in serum ceruloplasmin activity in Long-Evans cinnamon mutant rat. J Biol Chem 1993;268:8965-8971.
  17. Yoshida MC, Masuda R, Sasaki M, et al. New mutation causing hereditary hepatitis in the laboratory rat. J Hered 1987;78:361-365. https://doi.org/10.1093/oxfordjournals.jhered.a110416
  18. Enomoto K, Takahashi H, Mori M. A new rat model for the study of hepatocarcinogenesis. J Gastroenterol Hepatol 1992;7:98-104. https://doi.org/10.1111/j.1440-1746.1992.tb00941.x
  19. Bromberg J. Stat proteins and oncogenesis. J Clin Invest 2002;109:1139-1142. https://doi.org/10.1172/JCI0215617
  20. Sugawara N, Sugawara C, Katakura M, Takahashi H, Mori M. Harmful effect of administration of copper on LEC rats. Res Commun Chem Pathol Pharmacol 1991;73:289-297.
  21. Ono T, Abe S, Yoshida MC. Hereditary low level of plasma ceruloplasmin in LEC rats associated with spontaneous development of hepatitis and liver cancer. Jpn J Cancer Res 1991;82:486-489. https://doi.org/10.1111/j.1349-7006.1991.tb01875.x
  22. Bennhold H. Two cases of familial analbuminemia. Mar Med 1959;38:863-872.
  23. Cormode EJ, Lyster DM, Israels S. Analbuminemia in a neonate. J Pediatr 1975;86:862-867. https://doi.org/10.1016/S0022-3476(75)80215-0
  24. David P, Alexandre E, Chenard-Neu MP, Wolf P, Jaeck D, Richert L. Failure of liver cirrhosis induction by thioacetamide in Nagase analbuminaemic rats. Lab Anim 2002;36:158-164. https://doi.org/10.1258/0023677021912442
  25. Shumiya S, Nagase S. Establishment and characteristics of three analbuminemic congenic strains of rats. Jikken Dobutsu 1986;35:409-416.
  26. Kurisu H, Kamisaka K, Koyo T, et al. Organic anion transport study in mutant rats with autosomal recessive conjugated hyperbilirubinemia. Life Sci 1991;49:1003-1011. https://doi.org/10.1016/0024-3205(91)90301-Q
  27. Fernandez-Checa JC, Takikawa H, Horie T, Ookhtens M, Kaplowitz N. Canalicular transport of reduced glutathione in normal and mutant Eisai hyperbilirubinemic rats. J Biol Chem 1992;267:1667-1673.
  28. Hosokawa S, Tagaya O, Mikami T, et al. A new rat mutant with chronic conjugated hyperbilirubinemia and renal glomerular lesions. Lab Anim Sci 1992;42:27-34.
  29. Takikawa H, Sano N, Narita T, et al. Biliary excretion of bile acid conjugates in a hyperbilirubinemic mutant Sprague-Dawley rat. Hepatology 1991;14:352-360.
  30. Takikawa H, Sano N, Wako Y, Yamanaka M. Effects of organic anions and bile acids on biliary lipid excretion in hyperbilirubinemic mutant Sprague-Dawley rats. J Hepatol 1993;17:247-252. https://doi.org/10.1016/S0168-8278(05)80046-7
  31. Shumiya S, Nagase S. Establishment of an albumin-deficient and jaundiced strain of rats. Jikken Dobutsu 1981;30:291-297.
  32. Tonnesen K. Experimental liver failure. A comparison between hepatectomy and hepatic devascularization in the pig. Acta Chir Scand 1977;143:271-277.
  33. Emond J, Capron-Laudereau M, Meriggi F, Bernuau J, Reynes M, Houssin D. Extent of hepatectomy in the rat. Evaluation of basal conditions and effect of therapy. Eur Surg Res 1989;21:251-259. https://doi.org/10.1159/000129034
  34. Panis Y, McMullan DM, Emond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery 1997;121:142-149. https://doi.org/10.1016/S0039-6060(97)90283-X
  35. Fischer M, Stotter L, Schmahl W, Gartmaier P, Erhardt W. Acute liver failure due to temporary hepatic ischemia in the pig. Acta Hepatogastroenterol (Stuttg) 1976;23:241-249.
  36. Borghi-Scoazec G, Scoazec JY, Durand F, et al. Apoptosis after ischemia-reperfusion in human liver allografts. Liver Transpl Surg 1997;3:407-415. https://doi.org/10.1002/lt.500030408
  37. Garcia-Valdecasas JC, Rull R, Grande L, et al. Prostacyclin, thromboxane, and oxygen free radicals and postoperative liver function in human liver transplantation. Transplantation 1995;60:662-667. https://doi.org/10.1097/00007890-199510150-00008
  38. Gasbarrini A, Colantoni A, Di Campli C, et al. Intermittent anoxia reduces oxygen free radicals formation during reoxygenation in rat hepatocytes. Free Radic Biol Med 1997;23:1067-1072. https://doi.org/10.1016/S0891-5849(97)00141-X
  39. Shirasugi N, Wakabayashi G, Shimazu M, et al. Up-regulation of oxygen-derived free radicals by interleukin-1 in hepatic ischemia/reperfusion injury. Transplantation 1997;64:1398-1403. https://doi.org/10.1097/00007890-199711270-00004
  40. Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 1984;65:305-311.
  41. Chang ML, Yeh CT, Chang PY, Chen JC. Comparison of murine cirrhosis models induced by hepatotoxin administration and common bile duct ligation. World J Gastroenterol 2005;11:4167-4172. https://doi.org/10.3748/wjg.v11.i27.4167
  42. Keppler D, Lesch R, Reutter W, Decker K. Experimental hepatitis induced by D-galactosamine. Exp Mol Pathol 1968;9:279-290. https://doi.org/10.1016/0014-4800(68)90042-7
  43. Keppler D, Decker K. Mechanism of action of D-galactosamine in the liver. Verh Dtsch Ges Inn Med 1971;77:1182-1185.
  44. Takahashi N, Ishizuya T, Mori N. In-vitro preparation of experimental models of hepatitis with D-galactosamine and their modification by liver-repairing factors. Int J Tissue React 1990;12:263-268.
  45. Gantner F, Kusters S, Wendel A, Hatzelmann A, Schudt C, Tiegs G. Protection from T cell-mediated murine liver failure by phosphodiesterase inhibitors. J Pharmacol Exp Ther 1997;280:53-60.
  46. Leist M, Gantner F, Kunstle G, et al. The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol Med 1996;2:109-124.
  47. Makin AJ, Hughes RD, Williams R. Systemic and hepatic hemodynamic changes in acute liver injury. Am J Physiol 1997;272:G617-625.
  48. Black M. Acetaminophen hepatotoxicity. Gastroenterology 1980;78:382-392.
  49. Boyd EM, Bereczky GM. Liver necrosis from paracetamol. Br J Pharmacol Chemother 1966;26:606-614. https://doi.org/10.1111/j.1476-5381.1966.tb01841.x
  50. Boyd EM, Hogan SE. The chronic oral toxicity of paracetamol at the range of the LD50 (100 days) in albino rats. Can J Physiol Pharmacol 1968;46:239-245. https://doi.org/10.1139/y68-040
  51. Davidson DG, Eastham WN. Acute liver necrosis following overdose of paracetamol. Br Med J 1966;2:497-499. https://doi.org/10.1136/bmj.2.5512.497
  52. Corcoran GB, Mitchell JR, Vaishnav YN, Horning EC. Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate, N-acetyl-p-benzoquinoneimine. Mol Pharmacol 1980;18:536-542.
  53. Jollow DJ, Thorgeirsson SS, Potter WZ, Hashimoto M, Mitchell JR. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 1974;12:251-271. https://doi.org/10.1159/000136547
  54. Mohandas J, Duggin GG, Horvath JS, Tiller DJ. Metabolic oxidation of acetaminophen (paracetamol) mediated by cytochrome P-450 mixed-function oxidase and prostaglandin endoperoxide synthetase in rabbit kidney. Toxicol Appl Pharmacol 1981;61:252-259. https://doi.org/10.1016/0041-008X(81)90415-4
  55. Gardner CR, Heck DE, Yang CS, et al. Role of nitric oxide in acetaminophen-induced hepatotoxicity in the rat. Hepatology 1998;27:748-754. https://doi.org/10.1002/hep.510270316
  56. Green MD, Fischer LJ. Hepatotoxicity of acetaminophen in neonatal and young rats. II. Metabolic aspects. Toxicol Appl Pharmacol 1984;74:125-133. https://doi.org/10.1016/0041-008X(84)90278-3
  57. Green MD, Shires TK, Fischer LJ. Hepatotoxicity of acetaminophen in neonatal and young rats. I. Age-related changes in susceptibility. Toxicol Appl Pharmacol 1984;74:116-124. https://doi.org/10.1016/0041-008X(84)90277-1
  58. Gregus Z, Madhu C, Goon D, Klaassen CD. Effect of galactosamine-induced hepatic UDP-glucuronic acid depletion on acetaminophen elimination in rats. Dispositional differences between hepatically and extrahepatically formed glucuronides of acetaminophen and other chemicals. Drug Metab Dispos 1988;16:527-533.
  59. Hubner G. Ultrastructural liver damage caused by direct action of carbon tetrachloride in vivo and in vitro. Virchows Arch Pathol Anat Physiol Klin Med 1965;339:187-197. https://doi.org/10.1007/BF00962883
  60. Smith DH. Carbon tetrachloride toxicity. Br Med J 1965;2:1434.
  61. Das PK, Chopra P, Nayak NC. Hepatocellular tolerance to carbon tetrachloride induced injury in the rat: a study of its nature and possible mode of evolution. Exp Mol Pathol 1974;21:218-236. https://doi.org/10.1016/0014-4800(74)90091-4
  62. Shi J, Aisaki K, Ikawa Y, Wake K. Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am J Pathol 1998;153:515-525. https://doi.org/10.1016/S0002-9440(10)65594-0
  63. Dashti H, Jeppsson B, Hagerstrand I, et al. Thioacetamideand carbon tetrachloride-induced liver cirrhosis. Eur Surg Res 1989;21:83-91. https://doi.org/10.1159/000129007
  64. Nakano A, Kanda T, Abe H. Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol 1996;11:1143-1154. https://doi.org/10.1111/j.1440-1746.1996.tb01843.x
  65. Recknagel RO, Ghoshal AK. New data on the question of lipoperoxidation in carbon tetrachloride poisoning. Exp Mol Pathol 1966;5:108-117. https://doi.org/10.1016/0014-4800(66)90008-6
  66. Slater TF, Strauli UD, Sawyer BC. Changes in liver nucleotide concentrations in experimental liver injury. 1. Carbon tetrachloride poisoning. Biochem J 1964;93:260-266. https://doi.org/10.1042/bj0930260
  67. Benedetti A, Ferrali M, Chieli E, Comporti M. A study of the relationships between carbon tetrachloride-induced lipid peroxidation and liver damage in rats pretreated with vitamin E. Chem Biol Interact 1974;9:117-134. https://doi.org/10.1016/0009-2797(74)90004-0
  68. Recknagel RO, Ghoshal AK. Lipoperoxidation of rat liver microsomal lipids induced by carbon tetrachloride. Nature 1966;210:1162-1163. https://doi.org/10.1038/2101162a0
  69. Nielsen VK, Larsen J. Acute renal failure due to carbon tetrachloride poisoning. Acta Med Scand 1965;178:363-374.
  70. Sinicrope RA, Gordon JA, Little JR, Schoolwerth AC. Carbon tetrachloride nephrotoxicity: a reassessment of pathophysiology based upon the urinary diagnostic indices. Am J Kidney Dis 1984;3:362-365. https://doi.org/10.1016/S0272-6386(84)80084-0
  71. Chieli E, Malvaldi G. Role of the microsomal FAD-containing monooxygenase in the liver toxicity of thioacetamide S-oxide. Toxicology 1984;31:41-52. https://doi.org/10.1016/0300-483X(84)90154-9
  72. Bruck R, Oren R, Shirin H, et al. Hypothyroidism minimizes liver damage and improves survival in rats with thioacetamide induced fulminant hepatic failure. Hepatology 1998;27:1013-1020. https://doi.org/10.1002/hep.510270417
  73. Peeling J, Shoemaker L, Gauthier T, Benarroch A, Sutherland GR, Minuk GY. Cerebral metabolic and histological effects of thioacetamide-induced liver failure. Am J Physiol 1993;265:G572-578.
  74. Zimmermann C, Ferenci P, Pifl C, et al. Hepatic encephalopathy in thioacetamide-induced acute liver failure in rats: characterization of an improved model and study of amino acid-ergic neurotransmission. Hepatology 1989;9:594-601. https://doi.org/10.1002/hep.1840090414
  75. Fontana L, Moreira E, Torres MI, et al. Serum amino acid changes in rats with thioacetamide-induced liver cirrhosis. Toxicology 1996;106:197-206. https://doi.org/10.1016/0300-483X(95)03177-H
  76. Petermann H, Heymann S, Vogl S, Dargel R. Phagocytic function and metabolite production in thioacetamide-induced liver cirrhosis: a comparative study in perfused livers and cultured Kupffer cells. J Hepatol 1996;24:468-477.
  77. Cui FJ, Choi SB, Cho JA, et al. The development of an efficient rat hepatic cirrhosis model. Korean J Hepatobiliary Pancreat Surg 2007;11:46-52.