DOI QR코드

DOI QR Code

Generation Mechanism and Numerical Simulation of Rip Current at Haeundae Beach

해운대 해수욕장의 이안류 발생기구 및 수치모의

  • Kim, In-Chul (Division of Architecture & Civil Engineering, Dongseo University) ;
  • Lee, Joo-Yong (Department of Civil and Environmental Engineering, Sungkyunkwan University) ;
  • Lee, Jung-Lyul (Department of Civil and Environmental Engineering, Sungkyunkwan University)
  • 김인철 (동서대학교 건축토목공학부) ;
  • 이주용 (성균관대학교 건설환경시스템공학과) ;
  • 이정렬 (성균관대학교 사회환경시스템공학부)
  • Received : 2011.01.03
  • Accepted : 2011.01.10
  • Published : 2011.02.28

Abstract

At Haeundae Beach in Busan, people were swept away by the fast-moving rip current and rescued, on August 13th and 15th, 2009 & July 29th and 30th, 2010. In predicting the wave-induced current and consequent tube movement for public safety, the coastal flows and waves are calculated at each time step and grid point by means of systematic interfacing of hydrodynamic and wave models (Lee, 2001). To provide a user-friendly simulation tool for end-users, the forecasting system has been built in a software package called HAECUM. Outputs from the system are viewed as graphs of tube positions with combined current vectors for easy decision of emergency management officials. The tube-wave interaction is taken into account and the traces of swim tube are simulated by using a Lagrangian random walk (Chorin, 1978; Lee, 1994). In this study, we use the Lee's approach (Lee, 1993) in estimating the surface onshore currents due to wave breaking.

2009년 8월 13일과 15일, 부산 해운대 해수욕장 앞 해상에서 이안류가 발생하였다. 또한, 올 여름인 2010년 7월 29일과 30일에도 이안류가 발생하여 피서객 들이 조난된 사고가 발생하였다. 해수욕객들은 전원 구조되어 인명 피해는 발생하지 않았지만 최근 이안류 발생이 너무 잦아져 이에 대한 원인파악과 대책마련이 시급한 실정이다. 본 논문에서는 파랑모형과 조류가 결합된 해빈류 모형을 기본으로 튜브거동까지 재현되는 사용자 편의를 위하여 GUI로 개발된 HAECUM 모형(HAEundae CUrrent Model)을 이용, 해운대 해수욕장의 이안류 발생 수치모의를 실시하였다.

Keywords

References

  1. 김인철 (1990). 연안역 구조물 주위에서의 파랑과 해빈류의 수치모형에 관한 연구, 박사학위논문, 서울대학교.
  2. 김인철, 이주용, 이정렬 (2009). 해운대 해수욕장의 이안류 발생 수치모의, 한국해안해양공학회 2009년도 발표 논문집, 18, 29-32.
  3. 김창식, 박광순, 김선정, 전기천, 심재설, 오병철, 박영길, 최영미, 김형기 (1993). 폭풍시 연안류 변동에 따른 연안재해요소 연구, 한국해양연구소.
  4. 유동훈 (1990). 불규칙파에 의한 연안류. 대한토목학회논문집, 10(4), 151-158.
  5. 이종섭, 탁대호, 우진갑 (2007). 해운대 해수욕장의 계절별 파랑, 해빈류 및 퇴적물이동 특성, 한국해안해양공학회지, 19(6), 574-585.
  6. 이정만, 김재중, 박정철 (1998). 파랑에 의한 연안류의 수치모델에 관한 연구. 한국해양공학회지, 12(3), 75-85.
  7. 전인식, 성상봉, 김귀동, 심재설 (2005). Boussinesq 방정식을 이용한 수중천퇴에서의 파랑변형 및 파랑류 계산, 2005 대한토목학회 정기학술대회논문집, 756-759.
  8. 최은주, 유수진, 김현우, 권정곤 (1994). 방향분산성이 고려된 해빈류 유동특성에 관한 연구, 대한환경공학회 추계학술연구발표회 논문집, 475-477.
  9. 홍성진 (2009). 국립방재연구소 Newsletter 제26호.
  10. Basco, D. R. (1983). Surfzone currents. Coastal Eng., 7, 331-355. https://doi.org/10.1016/0378-3839(83)90003-0
  11. Battjets, J. A. (1988). Surfzone dynamics. ann. Rev. Fluid Mech., 20, 257-293. https://doi.org/10.1146/annurev.fl.20.010188.001353
  12. Bowen, A. J. and Inman, D. L. (1969). Rip currents: 2. Laboratory and field observations, J. Geophys. Res., 74, 5479-5490. https://doi.org/10.1029/JC074i023p05479
  13. Buhler, O. and Jacobson, T. E. (2001). Wave-driven currents and vortex dynamics on barred beaches, J. Fluid Mech. 449, 313-339. https://doi.org/10.1017/S0022112001006322
  14. Chorin, A. J. (1978). Vortex sheet approx. of boundary Layer, J. Compt. Phys., 27, 428-442. https://doi.org/10.1016/0021-9991(78)90019-0
  15. Dalrymple, R. A. and Lozano, C. J. (1978). Wave-current interaction models for rip currents, J. Geophys. Res. 83 (C12), 6063-6071. https://doi.org/10.1029/JC083iC12p06063
  16. De Vriend, H. J. (1986). 2DH computation of transient seabed evolutions. Proc. 20th Int. Conf. on Coastal Engrg., ASCE, 1689-1712.
  17. Falques A., Ribas F., Larroude P. and Montoto A. (1999). Nearshore oblique bars. modelling versus observations at the Truc Vert Beach. In: I. A. H. R. Symposium on River, Coastal and Estuarine Morphodynamics, DIAM: Genoa, Italy. 207-216.
  18. Hino, M. (1974). Theory on the formation of rip-current and cuspidal coast. Proceedings of the 14th International Conference on Coastal Engineering. Am. Soc. of civ. Eng., Copenhagen, 901-919.
  19. Kabiling, M. B. and Sato, S. (1993). Two-dimensional nonlinear dispersive wave-current and three dimensional beach deformation model, Coastal Eng. Japan 35, 195-212.
  20. LeBlond, P. H. and Tang, C. L. (1974). On energy coupling between waves and rip currets, J. Geophy., Res., 79, 811-816. https://doi.org/10.1029/JC079i006p00811
  21. Lee. J. L. (1993) Wave-current interaction and quasi 3D numerical modeling in nearshore zone, PhD. Dissertation, University of Florida.
  22. Lee, J. L. and Wang, H. (1994). One-D model prediction of pollutant transport at a canal network, The Journal of Korean Society of Coastal and Ocean Engineers, 6(1), 51-60.
  23. Lee, J. L. and Park, C. S. (2000). Development of weakly nonlinear wave model and its numerical simulation. J. Korean Soc. of Coastal and Ocean Engineers, 12(4), 181-189.
  24. Lee, J. L. and Lee, K. J. (2001). Effect of a surface-piercing vertical thin breakwater to harbor tranquility. The First Asian and Pacific Coastal Engnering Confernce, 186-195.
  25. Lee, J. L., Liu, J. and Teng, M. (2004). A numerical study on nearshore sediment transport around Oahu Island in Hawaii. Journal of Coastal Research, SI 39.
  26. Liu, P. L. F. and Mei, C. C. (1976). Water motion on a beach in the presence of a breakwater 2. Mean currents, J Geophys Res. Oceans and Atmosphere 81, 3085-3094.
  27. Long, J. W. and Ozkan-Haller, H. T. (2009). Low-frequency characteristics of wave group-forced vortices, Journal of Geophysical research, 114, C08004, doi:10.1029/2008JC004894, 2009.
  28. Longuet-Higgins, M. S. and Stewart, R. W. (1960). Changes in the form of short gravity waves on long waves and tidal current, J. Fl. Mech. 8, 565-583. https://doi.org/10.1017/S0022112060000803
  29. Longuet-Higgins, M. S. and Stewart, R. W. (1961). The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fl. Mech., 10, 529-549. https://doi.org/10.1017/S0022112061000342
  30. Longuet-Higgins, M. S. and Stewart, R. W. (1962). Radiation stress and mass transport in gravity waves, with application to "surfbeats.", J. Fl. Mech. 13, 481-504. https://doi.org/10.1017/S0022112062000877
  31. Longuet-Higgins, M. S. and Stewart, R. W. (1964). Radiation stress in water waves, a physical discussion with applications. Deep-Sea Res. 11(4), 529-563.
  32. Mei, C. C. (1989). The Applied dynamics of ocean surface waves. World Scientific, Singapore.
  33. Miller, C. and Barcilon, A. (1978). Hydrodynamic instability in the surf zone as a mechanism for the formation of horizontal gyres, Journal of Geophysical Research, 83, C8, 4107-4116. https://doi.org/10.1029/JC083iC08p04107
  34. Nearshore Canyon EXperiment. (2003).
  35. Noda, E. K. (1974). Wave induced nearshore circulation, J. Geophys. Res. 79, 4097-4106. https://doi.org/10.1029/JC079i027p04097
  36. Shepard, F. P., Emery, K. O. and E. C. LaFond, (1941). Rip currents: A process of geological importance, J. Geol., 49, 337-369. https://doi.org/10.1086/624971
  37. Shepard, F. P., and D. L. Inman. (1950). Nearshore circulation related to bottom topography and wave refraction, Eos Trans. AGU, 31(4), 555-565. https://doi.org/10.1029/TR031i004p00555
  38. Spydell, M. and Feddersen, F. (2009), Lagrangian drifter dispersion in the surf zone: Directionally spread normally incident waves, J. Phys. Ocaeanogr., 39, 809-830. https://doi.org/10.1175/2008JPO3892.1
  39. Spydell, M., Feddersen, F. Guza, R. and W. Schmidt. (2007), Observing surf-zone dispersion with drifters, J. Phys. Ocaeanogr., 37, 2920-2939. https://doi.org/10.1175/2007JPO3580.1
  40. Tolman, H. L. (1989). The numerical model WAVEWATCH: A third generation model for the hindcasting of wind waves on tides in shelf seas, Communications on Hydraulic and Geotechnical Engineering, Delft Univ. of Techn., ISSN 0169-6548, Rep. no. 89-2, 72.
  41. Tolman, H. L. (1992). Effects of numerics on the physics in a thirdgeneration wind-wave model. J. Phys. Oceanogr., 22, 1095-1111. https://doi.org/10.1175/1520-0485(1992)022<1095:EONOTP>2.0.CO;2
  42. Yoo, D. (1989). Explicit modelling of bottom friction in combined wave-current flow, Coastal Eng., 13, 325-340. https://doi.org/10.1016/0378-3839(89)90040-9

Cited by

  1. Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation vol.46, pp.2, 2013, https://doi.org/10.3741/JKWRA.2013.46.2.205
  2. Non-hydrostatic Modeling of Wave Transformation and Rip Current Circulation: A Case Study for Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-033.1
  3. Analysis of Beach Safety Perception and Satisfaction among Haeundae Beach Visitors through CIT Method vol.72, 2014, https://doi.org/10.2112/SI72-020.1
  4. Numerical Study of Rip Current Generation Mechanism at Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-032.1
  5. Numerical Study on a Dominant Mechanism of Rip Current at Haeundae Beach: Honeycomb Pattern of Waves vol.32, pp.5B, 2012, https://doi.org/10.12652/Ksce.2012.32.5B.321
  6. Application of 3-D Numerical Method (LES-WASS-3D) to Estimation of Nearshore Current at Songdo Beach with Submerged Breakwaters vol.27, pp.4, 2013, https://doi.org/10.5574/KSOE.2013.27.4.014