References
- 김인철 (1990). 연안역 구조물 주위에서의 파랑과 해빈류의 수치모형에 관한 연구, 박사학위논문, 서울대학교.
- 김인철, 이주용, 이정렬 (2009). 해운대 해수욕장의 이안류 발생 수치모의, 한국해안해양공학회 2009년도 발표 논문집, 18, 29-32.
- 김창식, 박광순, 김선정, 전기천, 심재설, 오병철, 박영길, 최영미, 김형기 (1993). 폭풍시 연안류 변동에 따른 연안재해요소 연구, 한국해양연구소.
- 유동훈 (1990). 불규칙파에 의한 연안류. 대한토목학회논문집, 10(4), 151-158.
- 이종섭, 탁대호, 우진갑 (2007). 해운대 해수욕장의 계절별 파랑, 해빈류 및 퇴적물이동 특성, 한국해안해양공학회지, 19(6), 574-585.
- 이정만, 김재중, 박정철 (1998). 파랑에 의한 연안류의 수치모델에 관한 연구. 한국해양공학회지, 12(3), 75-85.
- 전인식, 성상봉, 김귀동, 심재설 (2005). Boussinesq 방정식을 이용한 수중천퇴에서의 파랑변형 및 파랑류 계산, 2005 대한토목학회 정기학술대회논문집, 756-759.
- 최은주, 유수진, 김현우, 권정곤 (1994). 방향분산성이 고려된 해빈류 유동특성에 관한 연구, 대한환경공학회 추계학술연구발표회 논문집, 475-477.
- 홍성진 (2009). 국립방재연구소 Newsletter 제26호.
- Basco, D. R. (1983). Surfzone currents. Coastal Eng., 7, 331-355. https://doi.org/10.1016/0378-3839(83)90003-0
- Battjets, J. A. (1988). Surfzone dynamics. ann. Rev. Fluid Mech., 20, 257-293. https://doi.org/10.1146/annurev.fl.20.010188.001353
- Bowen, A. J. and Inman, D. L. (1969). Rip currents: 2. Laboratory and field observations, J. Geophys. Res., 74, 5479-5490. https://doi.org/10.1029/JC074i023p05479
- Buhler, O. and Jacobson, T. E. (2001). Wave-driven currents and vortex dynamics on barred beaches, J. Fluid Mech. 449, 313-339. https://doi.org/10.1017/S0022112001006322
- Chorin, A. J. (1978). Vortex sheet approx. of boundary Layer, J. Compt. Phys., 27, 428-442. https://doi.org/10.1016/0021-9991(78)90019-0
- Dalrymple, R. A. and Lozano, C. J. (1978). Wave-current interaction models for rip currents, J. Geophys. Res. 83 (C12), 6063-6071. https://doi.org/10.1029/JC083iC12p06063
- De Vriend, H. J. (1986). 2DH computation of transient seabed evolutions. Proc. 20th Int. Conf. on Coastal Engrg., ASCE, 1689-1712.
- Falques A., Ribas F., Larroude P. and Montoto A. (1999). Nearshore oblique bars. modelling versus observations at the Truc Vert Beach. In: I. A. H. R. Symposium on River, Coastal and Estuarine Morphodynamics, DIAM: Genoa, Italy. 207-216.
- Hino, M. (1974). Theory on the formation of rip-current and cuspidal coast. Proceedings of the 14th International Conference on Coastal Engineering. Am. Soc. of civ. Eng., Copenhagen, 901-919.
- Kabiling, M. B. and Sato, S. (1993). Two-dimensional nonlinear dispersive wave-current and three dimensional beach deformation model, Coastal Eng. Japan 35, 195-212.
- LeBlond, P. H. and Tang, C. L. (1974). On energy coupling between waves and rip currets, J. Geophy., Res., 79, 811-816. https://doi.org/10.1029/JC079i006p00811
- Lee. J. L. (1993) Wave-current interaction and quasi 3D numerical modeling in nearshore zone, PhD. Dissertation, University of Florida.
- Lee, J. L. and Wang, H. (1994). One-D model prediction of pollutant transport at a canal network, The Journal of Korean Society of Coastal and Ocean Engineers, 6(1), 51-60.
- Lee, J. L. and Park, C. S. (2000). Development of weakly nonlinear wave model and its numerical simulation. J. Korean Soc. of Coastal and Ocean Engineers, 12(4), 181-189.
- Lee, J. L. and Lee, K. J. (2001). Effect of a surface-piercing vertical thin breakwater to harbor tranquility. The First Asian and Pacific Coastal Engnering Confernce, 186-195.
- Lee, J. L., Liu, J. and Teng, M. (2004). A numerical study on nearshore sediment transport around Oahu Island in Hawaii. Journal of Coastal Research, SI 39.
- Liu, P. L. F. and Mei, C. C. (1976). Water motion on a beach in the presence of a breakwater 2. Mean currents, J Geophys Res. Oceans and Atmosphere 81, 3085-3094.
- Long, J. W. and Ozkan-Haller, H. T. (2009). Low-frequency characteristics of wave group-forced vortices, Journal of Geophysical research, 114, C08004, doi:10.1029/2008JC004894, 2009.
- Longuet-Higgins, M. S. and Stewart, R. W. (1960). Changes in the form of short gravity waves on long waves and tidal current, J. Fl. Mech. 8, 565-583. https://doi.org/10.1017/S0022112060000803
- Longuet-Higgins, M. S. and Stewart, R. W. (1961). The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fl. Mech., 10, 529-549. https://doi.org/10.1017/S0022112061000342
- Longuet-Higgins, M. S. and Stewart, R. W. (1962). Radiation stress and mass transport in gravity waves, with application to "surfbeats.", J. Fl. Mech. 13, 481-504. https://doi.org/10.1017/S0022112062000877
- Longuet-Higgins, M. S. and Stewart, R. W. (1964). Radiation stress in water waves, a physical discussion with applications. Deep-Sea Res. 11(4), 529-563.
- Mei, C. C. (1989). The Applied dynamics of ocean surface waves. World Scientific, Singapore.
- Miller, C. and Barcilon, A. (1978). Hydrodynamic instability in the surf zone as a mechanism for the formation of horizontal gyres, Journal of Geophysical Research, 83, C8, 4107-4116. https://doi.org/10.1029/JC083iC08p04107
- Nearshore Canyon EXperiment. (2003).
- Noda, E. K. (1974). Wave induced nearshore circulation, J. Geophys. Res. 79, 4097-4106. https://doi.org/10.1029/JC079i027p04097
- Shepard, F. P., Emery, K. O. and E. C. LaFond, (1941). Rip currents: A process of geological importance, J. Geol., 49, 337-369. https://doi.org/10.1086/624971
- Shepard, F. P., and D. L. Inman. (1950). Nearshore circulation related to bottom topography and wave refraction, Eos Trans. AGU, 31(4), 555-565. https://doi.org/10.1029/TR031i004p00555
- Spydell, M. and Feddersen, F. (2009), Lagrangian drifter dispersion in the surf zone: Directionally spread normally incident waves, J. Phys. Ocaeanogr., 39, 809-830. https://doi.org/10.1175/2008JPO3892.1
- Spydell, M., Feddersen, F. Guza, R. and W. Schmidt. (2007), Observing surf-zone dispersion with drifters, J. Phys. Ocaeanogr., 37, 2920-2939. https://doi.org/10.1175/2007JPO3580.1
- Tolman, H. L. (1989). The numerical model WAVEWATCH: A third generation model for the hindcasting of wind waves on tides in shelf seas, Communications on Hydraulic and Geotechnical Engineering, Delft Univ. of Techn., ISSN 0169-6548, Rep. no. 89-2, 72.
- Tolman, H. L. (1992). Effects of numerics on the physics in a thirdgeneration wind-wave model. J. Phys. Oceanogr., 22, 1095-1111. https://doi.org/10.1175/1520-0485(1992)022<1095:EONOTP>2.0.CO;2
- Yoo, D. (1989). Explicit modelling of bottom friction in combined wave-current flow, Coastal Eng., 13, 325-340. https://doi.org/10.1016/0378-3839(89)90040-9
Cited by
- Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation vol.46, pp.2, 2013, https://doi.org/10.3741/JKWRA.2013.46.2.205
- Non-hydrostatic Modeling of Wave Transformation and Rip Current Circulation: A Case Study for Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-033.1
- Analysis of Beach Safety Perception and Satisfaction among Haeundae Beach Visitors through CIT Method vol.72, 2014, https://doi.org/10.2112/SI72-020.1
- Numerical Study of Rip Current Generation Mechanism at Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-032.1
- Numerical Study on a Dominant Mechanism of Rip Current at Haeundae Beach: Honeycomb Pattern of Waves vol.32, pp.5B, 2012, https://doi.org/10.12652/Ksce.2012.32.5B.321
- Application of 3-D Numerical Method (LES-WASS-3D) to Estimation of Nearshore Current at Songdo Beach with Submerged Breakwaters vol.27, pp.4, 2013, https://doi.org/10.5574/KSOE.2013.27.4.014