DOI QR코드

DOI QR Code

Analysis of 2,3,7,8-substituted PCDDs, PCDFs, and DL-PCBs in muscle of crucian carp (Carassius auratus and Carassius cuvieri) from major rivers and lakes

주요 하천 및 호수에 서식하는 붕어 (Carassius auratus and Carassius cuvieri) 근육에 축적된 2,3,7,8-치환 PCDDs, PCDFs 및 DL-PCBs 분석

  • Jeong, Gi-Ho (Department of Chemistry, Pusan National University) ;
  • Moon, Ji-Yong (Department of Chemistry, Pusan National University) ;
  • Moon, Dong-Ho (Korea Environment Corporation, Incheon, Korea)
  • Received : 2011.08.18
  • Accepted : 2011.11.04
  • Published : 2011.12.25

Abstract

Bioaccumulation status and distribution characteristics of PCDDs, PCDFs and DL-PCBs in cruian carp collected from the four representative sites of major river systems in Korea were investigated. The recovery rates of PCDDs and PCDFs ranged from 50.6% to 88.3%, and those of DL-PCBs ranged from 52.3% to 93.2%. The mean, median and concentration range of ${\sum}$dioxins, which represents the total concentratons of PCDDs, PCDFs and DL-PCBs accumulated in the muscle of crucian carp, were 0.39, 0.14 and 0.047-1.0 pg TEQ/g wet wt., respectively. DL-PCBs were detected above the detection limit from all the samples, whereas PCDDs and PCDFs were detected from limited crucian samples. The relative contribution of DL-PCBs to ${\sum}$dioxins was remarkably larger than those for PCDDs and PCDFs. The percent contribution was 83.6% for DL-PCBs, and followed by 12.7% and 3.7% for PCDFs and PCDDs, respectively.

우리나라 주요 하천수계의 대표적인 지점 한 곳씩 선정하여 이곳에 서식하는 붕어에 대한 PCDDs, PCDFs 및 DL-PCBs의 체내 축적 정도를 분석하고 분포특성을 살펴보았다. 회수율은 PCDDs 및 PCDFs는 50.6%~88.3%, DL-PCBs는 52.3%~93.2%이었으며, 붕어 체내에 축적된 PCDDs, PCDFs 및 DL-PCBs를 모두 합한 ${\sum}$dioxins은 평균 0.39 pg TEQ $g^{-1}$ wet wt., 중앙값 0.14 pg TEQ/g wet wt., 그리고 농도 범위는 0.047-1.0 pg TEQ/g wet wt.으로 나타났다. PCDDs 및 PCDFs는 일부 시료에서 검출된 반면, DL-PCBs는모든 시료에서 검출되었으며 ${\sum}$dioxins에 대한 기여도가 83.6%로서 가장 높았다. 다음으로 PCDFs와 PCDDs가 각각 ${\sum}$dioxins의 12.7%와 3.7%를 기여하고 있었다.

Keywords

References

  1. Stockholm Convention on Persistent Organic Pollutants (POPs), 2004. .
  2. M. J. DeVito, L. S. Birnbaum, W. H. Farland and T. A. Gasiewicz, Environ. Health Perspect., 103, 820-831 (1995). https://doi.org/10.1289/ehp.95103820
  3. B. Birmingham, A. Gilman, D. Grant, J. Salminen, M. Boddington, B. Thorpe, I. While, P. Toft and V. Armstrong, Chemosphere, 19, 637-642 (1989). https://doi.org/10.1016/0045-6535(89)90383-4
  4. J. Sweetman, R. E. Alcock, J. Wittsiepe and K. C. Jones, Environ. Int., 26, 37-47 (2000). https://doi.org/10.1016/S0160-4120(00)00076-3
  5. US Environmental Protection Agency (USEPA), 2003. Draft Exposure and Human Health Risk Assessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds, Parts I, II, and III. US Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Exposure Assessment and Risk Characterization Group, Washington, D.C.
  6. G. H. Jeong, H. J. Kim, J. Y. Moon, S. K. Jeon, C. H. Joo, K. Choi and Y. S. Chang, Chemosphere, 75, 1221- 1225 (2009). https://doi.org/10.1016/j.chemosphere.2009.01.062
  7. S. Adu-Kumi, M. Kawano, Y. Shiki, P. O. Yoboah, D. Carboo, J. Pwamang, M. Morita and N. Suzuki, Chemosphere, 81, 675-684 (2010). https://doi.org/10.1016/j.chemosphere.2010.08.018
  8. L. L. F. Scott, D. F. Staskal, E. S. Williams, W. J. Luksemburg, J. D. Urban, L. M. Nguyen, L. C. Haws, L. S. Birnbaum, D. J. Paustenbach and M. A. Harris, Chemosphere, 74, 1002-1010 (2009). https://doi.org/10.1016/j.chemosphere.2008.09.090
  9. B. Stachel, E. H. Christoph, R. Gotz, T. Herrmann, F. Kruger, T. Kuhn, J. Lay, J. Loffler, O. Papke, H. Reincke, C. Schroter-Kermani, R. Schwartz, E. Steeg, D. Stehr, S. Uhlig and G. Umlauf, J. Hazardoud Materials, 148, 199-209 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.026
  10. P. Isosaari, A. Hallikainen, H. Kiviranta, P. Vuorinen, R. Parmanne, J. Koistinen and T. Vartiainen, Environ. Pollut., 141, 213-225 (2006). https://doi.org/10.1016/j.envpol.2005.08.055
  11. US Environmental Protection Agency (USEPA), 2007. National Lake Fish Tissue Study (Online). US Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, D.C. .
  12. S. H. Man, I. J. Hodgkiss, 1981. Hong Kong Freshwater Fishes. Urban Council, Wishing Printing Company, Hong Kong, p. 75 .
  13. W. Naito, J. Jin, Y. S. Kang, M. Yamamuro, S. Masunaga and J. Nakanishi, Chemosphere, 53, 347-362 (2003). https://doi.org/10.1016/S0045-6535(03)00046-8
  14. T. Sakurai, N. Suzuki, S. Masunaga and J. Nakanishi, Chemosphere, 37, 2211-2224 (1998). https://doi.org/10.1016/S0045-6535(98)00282-3
  15. S. Masunaga, T. Takasuga and J. Nakanishi, Chemosphere, 44, 873-885 (2001). https://doi.org/10.1016/S0045-6535(00)00310-6
  16. Y. Kajiwara, N. Kashiwagi and K. Kadokami, Chemosphere, 69, 1177-1187 (2007) https://doi.org/10.1016/j.chemosphere.2007.06.034
  17. Environmental Agency, Japan (EAJ), 1999. Nationwide survey on dioxins in fiscal year 1988 (Japanese).
  18. EC, 2001. Council Regulation (EC) No 2375/2001 of 29 November 2001 amending Commission Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities L 321:1e5.