DOI QR코드

DOI QR Code

Analytical study on nickel content in ceramic, metal and plastic materials

세라믹, 금속 및 플라스틱 소재의 니켈 함유량 분석에 관한 연구

  • Choi, Zel-Ho (Test & Standardization Center, Korea Institute of Ceramic Eng. & Tech.)
  • 최철호 (한국세라믹기술원 시험표준센터)
  • Received : 2011.11.10
  • Accepted : 2011.11.23
  • Published : 2011.12.25

Abstract

Quantitative analytical condition for nickel in ceramic, metal and plastic materials using complexation and solvent extraction followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and atomic absorption spectrophotometry (AAS) was studied. Ceramic, metal and plastic samples were dissolved by acid digestion. Nickel was determined by ICP-AES and AAS after extraction of Ni $(DMG)_2$ in $CHCl_3$. Recovery efficiency of nickel was satisfactory, and most of matrix elements causing interference could be effectively eliminated by the separation. Nickel in the certified reference materials (BAM-376 and PACS-2) were quantitatively determined without influence of sample matrix.

ICP-AES와 AAS를 이용하여 세라믹, 금속 및 플라스틱 소재에 함유된 니켈을 정량하기 위한 조건을 연구하였다. 니켈 정량을 위해 산분해하여 조제된 시험 용액을 직접 ICP-AES 또는 AAS로 분석할 때 철이나 크로뮴 등의 원소가 방해하므로, 니켈을 dimethylglyoxime으로 착화시키고 $CHCl_3$로 추출하여 방해원소로부터 분리한 후 $CHCl_3$을 제거하고 염산으로 용해하여 측정하였다. 니켈에 대한 측정 회수율이 우수하였고, 방해를 일으키는 매질원소를 효율적으로 제거할 수 있어 본 방법은 인증표준물질(BAM-376 및 PACS-2)에 대한 용매추출시험에서 matrix의 영향을 받지 않고 니겔을 정량할 수 있었다.

Keywords

References

  1. L. Bercovitch and J. Luo, Canad. Med. Assoc. J., 178, 23-24 (2008). https://doi.org/10.1503/cmaj.071233
  2. L. E. Bryld, C. Hindsberger, K. O. Kyvik, T. Agner and T. Menne, Br. J. Dermatol., 149, 1214-1220 (2003). https://doi.org/10.1111/j.1365-2133.2003.05678.x
  3. J. P. Thyssen, A. Linneberg, T. Menne and J. D. Johansen, Dermatitis, 57, 287-299 (2007). https://doi.org/10.1111/j.1600-0536.2007.01220.x
  4. G. Heine, A. Schnuch, W. Uter and M. Worm, Contact Dermatitis, 51, 111-117 (2004). https://doi.org/10.1111/j.0105-1873.2004.00411.x
  5. J. A. C. Broekaert, T. Graule, H. Janett, G. Tolg and P. Tschopel, Fresenius Z. Anal. Chem., 322, 825-838 (1989).
  6. T. Ishizuka, Y. Uwamino and A. Tange, Anal. Chim. Acta, 161, 285-291 (1984). https://doi.org/10.1016/S0003-2670(00)85798-0
  7. R. A. Sutherland and F. M. G. Taek, Adv. Envion. Res., 8, 37-50 (2003). https://doi.org/10.1016/S1093-0191(02)00144-2
  8. J. Wang, T. Nakazako, K. Sakanishi, O. Yamada, H. Tao and I. Saito, Talanta, 68, 1584-1590 (2006). https://doi.org/10.1016/j.talanta.2005.08.034
  9. V. Sandroni and C. M. M. Smith, Anal. Chim. Acta, 468, 335-344 (2002). https://doi.org/10.1016/S0003-2670(02)00655-4
  10. L. G. D anielsson, B. Magnusson, S. Westerlund and K. Zhang, Anal. Chim. Acta, 144, 183-188 (1982). https://doi.org/10.1016/S0003-2670(01)95531-X
  11. J. Flanjak and A. Hodda, Anal. Chim. Acta, 172, 313-316 (1985). https://doi.org/10.1016/S0003-2670(00)82622-7
  12. P. J. Stratham, Anal. Chim. Acta, 169, 149 (1985). https://doi.org/10.1016/S0003-2670(00)86217-0
  13. K. J. Iroglic, Anal. Chim. Acta, 196, 23 (1987). https://doi.org/10.1016/S0003-2670(00)83066-4
  14. V. P. Dedkova, O. P. Shvoeva and S. B. Savvin, J. Anal. Chem., 56(8), 758-762 (2001). https://doi.org/10.1023/A:1016745929604
  15. O. V. Mikhailov, Russ. J. Coord. Chem., 28(5), 352-357 (2002). https://doi.org/10.1023/A:1015573301672