DOI QR코드

DOI QR Code

Multiple Molecular Targets of Sensitizers in Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL/Apo2L)-Mediated Apoptosis

TRAIL 매개의 세포사멸 유도를 위한 다양한 분자적 타깃

  • Min, Kyoung-Jin (Department of Immunology, School of Medicine, Keimyung University) ;
  • Kwon, Taeg-Kyu (Department of Immunology, School of Medicine, Keimyung University)
  • 민경진 (계명대학교 의과대학 면역학교실) ;
  • 권택규 (계명대학교 의과대학 면역학교실)
  • Received : 2011.10.13
  • Accepted : 2011.10.31
  • Published : 2011.11.30

Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a recently identified member of the TNF ligand family that can initiate apoptosis through the activation of their death receptors. TRAIL has been paid attention as a potential anti-cancer drug, because it selectively induces apoptosis in tumor cells in vitro and in vivo but not in most normal cells. However, recent studies have shown that some cancer cells including malignant renal cell carcinoma and hepatocellular carcinoma, are resistant to the apoptotic effects of TRAIL. Therefore, single treatment with TRAIL may not be sufficient for the treatment of various malignant tumor cells. Understanding the molecular mechanisms of TRAIL resistance and identification of sensitizers capable of overcoming TRAIL resistance in cancer cells is needed for the establishment of more effective TRAIL-based cancer therapies. Chemotherapeutic drugs induce apoptosis and the upregulation of death receptors or activation of intracellular signaling pathways of TRAIL. Numerous chemotherapeutic drugs have been shown to sensitize tumor cells to TRAIL-mediated apoptosis. In this study, we summarize biological agents and drugs that sensitize tumors to TRAIL-mediated apoptosis and discuss the potential molecular basis for their sensitization.

TNF ligand 군에 속하는 Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L)은 death receptor를 통한 세포사멸을 유도하는 것으로 알려졌다. TRAIL은 정상세포에서는 세포사를 일으키지 않고 암세포에서만 특이적으로 세포사멸을 유도함으로써 잠재력 있는 항암제로 주목을 받고 있다. 그러나, 최근 연구에 의하면 악성 신장암과 간암과 같은 일부 암에서는 TRAIL에 의한 세포사에 저항성을 가지는 것으로 알려져 있다. 그러므로, TRAIL 만으로는 다양한 악성종양을 위한 치료법으로 적절하지 않다. TRAIL에 대한 저항성을 가지는 분자적 기전을 이해하고, TRAIL 저항성을 극복할 수 있는 증감제를 밝혀내는 것이 보다 효율적인 TRAIL을 이용한 암세포 치료 전략에 필요하다. 화학치료제들이 TRAIL 수용체인 death receptor의 발현을 증가시키고, 세포 내의 TRAIL에 의한 신호전달 체계를 활성화 시키는 것으로 알려져 있고, 이러한 기전을 통하여 다양한 화학치료제들이 TRAIL에 의한 세포사멸을 증가시키는 것을 확인하였다. 이 논문에서, 우리는 TRAIL에 의한 세포 사멸을 증가시키기 위한 생물학적 약물을 정리하고, 그 분자적 기전을 고찰한다.

Keywords

References

  1. Almasan, A. and A. Ashkenazi. 2003. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14, 337-348. https://doi.org/10.1016/S1359-6101(03)00029-7
  2. Bodmer, J. L., P. Meier, J. Tschopp, and P. Schneider. 2000. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J. Biol. Chem. 275, 20632-20637. https://doi.org/10.1074/jbc.M909721199
  3. Chen, X., K. Kandasamy, and R. K. Srivastava. 2003. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res. 63, 1059-1066.
  4. Cretney, E., K. Takeda, H. Yagita, M. Glaccum, J. J. Peschon, and M. J. Smyth. 2002. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand- deficient mice. J. Immunol. 168, 1356-1361. https://doi.org/10.4049/jimmunol.168.3.1356
  5. Di, P. R. and G. Zauli. 2004. Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J. Cell Physiol 201, 331-340. https://doi.org/10.1002/jcp.20099
  6. Ehrhardt, H., S. Fulda, I. Schmid, J. Hiscott, K. M. Debatin, and I. Jeremias. 2003. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene 22, 3842-3852. https://doi.org/10.1038/sj.onc.1206520
  7. Fulda, S. and K. M. Debatin. 2004. Modulation of TRAIL signaling for cancer therapy. Vitam. Horm. 67, 275-290. https://doi.org/10.1016/S0083-6729(04)67015-4
  8. Gli-Esposti, M. 1999. To die or not to die--the quest of the TRAIL receptors. J. Leukoc. Biol. 65, 535-542.
  9. Grosse-Wilde, A., O. Voloshanenko, S. L. Bailey, G. M. Longton, U. Schaefer, A. I. Csernok, G. Schutz, E. F. Greiner, C. J. Kemp, and H. Walczak. 2008. TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J. Clin. Invest 118, 100-110. https://doi.org/10.1172/JCI33061
  10. Hofer-Warbinek, R., J. A. Schmid, C. Stehlik, B. R. Binder, J. Lipp, and M. R. de. 2000. Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J. Biol. Chem. 275, 22064-22068. https://doi.org/10.1074/jbc.M910346199
  11. Huang, M. T., R. C. Smart, C. Q. Wong, and A. H. Conney. 1988. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48, 5941-5946.
  12. Huber, W. W., S. Prustomersky, E. Delbanco, M. Uhl, G. Scharf, R. J. Turesky, R. Thier, and R. Schulte-Hermann. 2002. Enhancement of the chemoprotective enzymes glucuronosyl transferase and glutathione transferase in specific organs of the rat by the coffee components kahweol and cafestol. Arch. Toxicol. 76, 209-217. https://doi.org/10.1007/s00204-002-0322-1
  13. Jeremias, I. and K. M. Debatin. 1998. TRAIL induces apoptosis and activation of NFkappaB. Eur. Cytokine Netw. 9, 687-688.
  14. Jung, E. M., J. W. Park, K. S. Choi, J. W. Park, H. I. Lee, K. S. Lee, and T. K. Kwon. 2006. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation. Carcinogenesis 27, 2008-2017. https://doi.org/10.1093/carcin/bgl026
  15. Kim, H. G., Y. P. Hwang, and H. G. Jeong. 2009. Kahweol blocks STAT3 phosphorylation and induces apoptosis in human lung adenocarcinoma A549 cells. Toxicol. Lett. 187, 28-34. https://doi.org/10.1016/j.toxlet.2009.01.022
  16. Kim, J.Y., K. S. Jung, K. J. Lee, H. K. Na, H. K. Chun, Y. H. Kho, and H. G. Jeong. 2004. The coffee diterpene kahweol suppress the inducible nitric oxide synthase expression in macrophages. Cancer Lett. 213, 147-154. https://doi.org/10.1016/j.canlet.2004.04.002
  17. Kirshner, J. R., A. Y. Karpova, M. Kops, and P. M. Howley. 2005. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target. J. Virol. 79, 9320-9324. https://doi.org/10.1128/JVI.79.14.9320-9324.2005
  18. LeBlanc, H. N. and A. Ashkenazi. 2003. Apo2L/TRAIL and its death and decoy receptors. Cell Death. Differ. 10, 66-75. https://doi.org/10.1038/sj.cdd.4401187
  19. Lee, T. J., E. M. Jung, J. T. Lee, S. Kim, J. W. Park, K. S. Choi, and T. K. Kwon. 2006. Mithramycin A sensitizes cancer cells to TRAIL-mediated apoptosis by down-regulation of XIAP gene promoter through Sp1 sites. Mol. Cancer Ther. 5, 2737-2746. https://doi.org/10.1158/1535-7163.MCT-06-0426
  20. Lee, T. J., J. T. Lee, J. W. Park, and T. K. Kwon. 2006. Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochem. Biophys. Res. Commun. 351, 1024-1030. https://doi.org/10.1016/j.bbrc.2006.10.163
  21. Lee, T. J., H. J. Um, D. S. Min, J. W. Park, K. S. Choi, and T. K. Kwon. 2009. Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic. Biol. Med. 46, 1639-1649. https://doi.org/10.1016/j.freeradbiomed.2009.03.022
  22. Levkau, B., K. J. Garton, N. Ferri, K. Kloke, J. R. Nofer, H. A. Baba, E. W. Raines, and G. Breithardt. 2001. xIAP induces cell-cycle arrest and activates nuclear factor-kappaB : new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ. Res. 88, 282-290. https://doi.org/10.1161/01.RES.88.3.282
  23. Martelli, A. M., P. L. Tazzari, G. Tabellini, R. Bortul, A. M. Billi, L. Manzoli, A. Ruggeri, R. Conte, and L. Cocco. 2003. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 17, 1794-1805. https://doi.org/10.1038/sj.leu.2403044
  24. Mehta, K., P. Pantazis, T. McQueen, and B. B. Aggarwal. 1997. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470-481. https://doi.org/10.1097/00001813-199706000-00010
  25. Miller, D. M., D. A. Polansky, S. D. Thomas, R. Ray, V. W. Campbell, J. Sanchez, and C. A. Koller. 1987. Mithramycin selectively inhibits transcription of G-C containing DNA. Am. J. Med. Sci. 294, 388-394. https://doi.org/10.1097/00000441-198711000-00015
  26. Mohan, R., H. J. Hammers, P. Bargagna-Mohan, X. H. Zhan, C. J. Herbstritt, A. Ruiz, L. Zhang, A. D. Hanson, B. P. Conner, J. Rougas, and V. S. Pribluda. 2004. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 7, 115-122. https://doi.org/10.1007/s10456-004-1026-3
  27. Mucha, S. R., A. Rizzani, A. L. Gerbes, P. Camaj, W. E. Thasler, C. J. Bruns, S. T. Eichhorst, E. Gallmeier, F. T. Kolligs, B. Goke, and E. N. De Toni. 2009. JNK inhibition sensitises hepatocellular carcinoma cells but not normal hepatocytes to the TNF-related apoptosis-inducing ligand. Gut. 58, 688-698. https://doi.org/10.1136/gut.2008.154625
  28. Ng, C. P., A. Zisman, and B. Bonavida. 2002. Synergy is achieved by complementation with Apo2L/TRAIL and actinomycin D in Apo2L/TRAIL-mediated apoptosis of prostate cancer cells: role of XIAP in resistance. Prostate 53, 286-299. https://doi.org/10.1002/pros.10155
  29. Pan, G., J. Ni, Y. F. Wei, G. Yu, R. Gentz, and V. M. Dixit. 1997. An antagonist decoy receptor and a death domain- containing receptor for TRAIL. Science 277, 815-818. https://doi.org/10.1126/science.277.5327.815
  30. Perianayagam, M. C., N. E. Madias, B. J. Pereira, and B. L. Jaber. 2006. CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60-derived neutrophils. Eur. J. Clin. Invest 36, 353-361. https://doi.org/10.1111/j.1365-2362.2006.01637.x
  31. Pitti, R. M., S. A. Marsters, S. Ruppert, C. J. Donahue, A. Moore, and A. Ashkenazi. 1996. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687-12690. https://doi.org/10.1074/jbc.271.22.12687
  32. Rychahou, P. G., C. A. Murillo, and B. M. Evers. 2005. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery 138, 391-397. https://doi.org/10.1016/j.surg.2005.05.012
  33. Secchiero, P., A. Gonelli, E. Carnevale, D. Milani, A. Pandolfi, D. Zella, and G. Zauli. 2003. TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107, 2250-2256. https://doi.org/10.1161/01.CIR.0000062702.60708.C4
  34. Song, J. J., J. Y. An, Y. T. Kwon, and Y. J. Lee. 2007. Evidence for two modes of development of acquired tumor necrosis factor-related apoptosis-inducing ligand resistance. Involvement of Bcl-xL. J. Biol. Chem. 282, 319-328. https://doi.org/10.1074/jbc.M608065200
  35. Spierings, D. C., E. G. de Vries, E. Vellenga, F. A. van den Heuvel, J. J. Koornstra, J. Wesseling, H. Hollema, and J. S. de. 2004. Tissue distribution of the death ligand TRAIL and its receptors. J. Histochem. Cytochem. 52, 821-831. https://doi.org/10.1369/jhc.3A6112.2004
  36. Takeda, K., Y. Hayakawa, M. J. Smyth, N. Kayagaki, N. Yamaguchi, S. Kakuta, Y. Iwakura, H. Yagita, and K. Okumura. 2001. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 7, 94-100. https://doi.org/10.1038/83416
  37. Tanaka, H., K. Yoshida, H. Okamura, H. Morimoto, T. Nagata, and T. Haneji. 2007. Calyculin A induces apoptosis and stimulates phosphorylation of p65NF-kappaB in human osteoblastic osteosarcoma MG63 cells. Int. J. Oncol. 31, 389-396.
  38. Tao, K. S., W. Wang, L. Wang, D. Y. Cao, Y. Q. Li, S. X. Wu, and K. F. Dou. 2008. The multifaceted mechanisms for coffee's anti-tumorigenic effect on liver. Med. Hypotheses 71, 730-736. https://doi.org/10.1016/j.mehy.2008.06.026
  39. Teitz, T., T. Wei, M. B. Valentine, E. F. Vanin, J. Grenet, V. A. Valentine, F. G. Behm, A. T. Look, J. M. Lahti, and V. J. Kidd. 2000. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med. 6, 529-535. https://doi.org/10.1038/75007
  40. Tran, S. E., T. H. Holmstrom, M. Ahonen, V. M. Kahari, and J. E. Eriksson. 2001. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J. Biol. Chem. 276, 16484-16490. https://doi.org/10.1074/jbc.M010384200
  41. Um, H. J., J. H. Oh, Y. N. Kim, Y. H. Choi, S. H. Kim, J. W. Park, and T. K. Kwon. 2010. The coffee diterpene kahweol sensitizes TRAIL-induced apoptosis in renal carcinoma Caki cells through down-regulation of Bcl-2 and c-FLIP. Chem. Biol. Interact. 186, 36-42. https://doi.org/10.1016/j.cbi.2010.04.013
  42. Van Geelen, C.M., E. G. de Vries, and J. S. de. 2004. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist. Updat. 7, 345-358. https://doi.org/10.1016/j.drup.2004.11.002
  43. van Noesel, M. M., B. S. van, P. A. Voute, J. G. Herman, R. Pieters, and R. Versteeg. 2003. Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38, 226-233. https://doi.org/10.1002/gcc.10278
  44. Wagner, K. W., E. A. Punnoose, T. Januario, D. A. Lawrence, R. M. Pitti, K. Lancaster, D. Lee, G. M. von, S. F. Yee, K. Totpal, L. Huw, V. Katta, G. Cavet, S. G. Hymowitz, L. Amler, and A. Ashkenazi. 2007. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13, 1070-1077. https://doi.org/10.1038/nm1627
  45. Wang, C., T. Chen, N. Zhang, M. Yang, B. Li, X. Lu, X. Cao, and C. Ling. 2009. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1- JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J. Biol. Chem. 284, 3804-3813. https://doi.org/10.1074/jbc.M807191200
  46. Wang, Q., Y. Ji, X. Wang, and B. M. Evers. 2000. Isolation and molecular characterization of the 5'-upstream region of the human TRAIL gene. Biochem. Biophys. Res. Commun. 276, 466-471. https://doi.org/10.1006/bbrc.2000.3512
  47. Wang, W. Q., H. Zhang, H. B. Wang, Y. G. Sun, Z. H. Peng, G. Zhou, S. M. Yang, R. Q. Wang, and D. C. Fang. 2010. Programmed cell death 4 (PDCD4) enhances the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by inhibiting the PI3K/Akt signaling pathway. Mol. Diagn. Ther. 14, 155-161. https://doi.org/10.1007/BF03256368
  48. Wang, X., W. Chen, W. Zeng, L. Bai, Y. Tesfaigzi, S. A. Belinsky, and Y. Lin. 2008. Akt-mediated eminent expression of c-FLIP and Mcl-1 confers acquired resistance to TRAIL-induced cytotoxicity to lung cancer cells. Mol. Cancer Ther. 7, 1156-1163. https://doi.org/10.1158/1535-7163.MCT-07-2183
  49. Wiley, S. R., K. Schooley, P. J. Smolak, W. S. Din, C. P. Huang, J. K. Nicholl, G. R. Sutherland, T. D. Smith, C. Rauch, and C. A. Smith. 1995. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673-682. https://doi.org/10.1016/1074-7613(95)90057-8
  50. Yokota, Y., P. Bargagna-Mohan, P. P. Ravindranath, K. B. Kim, and R. Mohan. 2006. Development of withaferin A analogs as probes of angiogenesis. Bioorg. Med. Chem. Lett. 16, 2603-2607. https://doi.org/10.1016/j.bmcl.2006.02.039
  51. Yue, H. H., G. E. Diehl, and A. Winoto. 2005. Loss of TRAIL-R does not affect thymic or intestinal tumor development in p53 and adenomatous polyposis coli mutant mice. Cell Death Differ. 12, 94-97. https://doi.org/10.1038/sj.cdd.4401523
  52. Zhang, L. and B. Fang. 2005. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 12, 228-237. https://doi.org/10.1038/sj.cgt.7700792