DOI QR코드

DOI QR Code

재조합 아밀로수크라아제를 이용한 효율적인 폴리페놀 배당체의 합성

Enzymatic Synthesis of Polyphenol Glycosides by Amylosucrase

  • 박현수 (부산대학교 미생물학과) ;
  • 최경화 (부산대학교 미생물학과) ;
  • 박영돈 (부산대학교 미생물학과) ;
  • 박천석 (경희대학교 생명과학대학 식품공학과) ;
  • 차재호 (부산대학교 미생물학과)
  • Park, Hyun-Su (Department of Microbiology, Pusan National University) ;
  • Choi, Kyoung-Hwa (Department of Microbiology, Pusan National University) ;
  • Park, Young-Don (Department of Microbiology, Pusan National University) ;
  • Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Cha, Jae-Ho (Department of Microbiology, Pusan National University)
  • 투고 : 2011.10.31
  • 심사 : 2011.11.18
  • 발행 : 2011.11.30

초록

재조합 아밀로수크라아제의 폴리페놀 배당체를 합성하는 능력을 검사하였다. 이 효소의 효소작용 특성에 근거하여 설탕을 기질로 사용하였으며 21 종류의 각기 다른 폴리페놀 화합물들이 수용체로 사용되었다. 당 전이 반응은 사용한 폴리페놀에 따라 하나 또는 두 개의 주요 폴리페놀 배당체를 합성하였다. 합성된 폴리페놀 배당체들은 박막 크로마토그래피법을 이용하여 확인되었고, 새로이 합성된 배당체의 구조는 당 전이 작용 특성에 근거하여 예측되었다. 수용체로 가능한 폴리페놀의 구조적 특징들이 평가되었으며, 이러한 결과는 Deinococcus geothermalis 유래 아밀로수크라아제가 식품, 화장품, 및 제약산업에서 높은 잠재성을 갖는 폴리페놀 배당체의 효소적 합성에 매우 효율적인 촉매로 활용될 수 있다는 것을 보여준다.

The capability of synthesizing polyphenol glycosides was examined using recombinant amylosucrase from the hyperthermophilic bacterium Deinococcus geothermalis. Based on the action mode of amylosucrase, sucrose and twenty-one polyphenols were used as a donor and acceptors respectively. The transglycosylation reaction by amylosucrase produced one or two major polyphenol glycosides depending on the type of polyphenols used. The synthesized polyphenol glycosides were detected by thin-layer chromatography. The structures of the newly synthesized polyphenol glycosides were predicted based on the transglycosylation mechanism of the enzyme. According to the acceptability of the polyphenols, the structural characteristics of polyphenol as an efficient acceptor were evaluated. The results indicate that amylosucrase is an efficient catalyst for the enzymatic synthesis of polyphenol glycosides, which have high potentials in food, cosmetics, and pharmaceutical industries.

키워드

참고문헌

  1. Cao, G., E. Sofic, and R. L. Prior. 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Biol. Med. 22, 749-760. https://doi.org/10.1016/S0891-5849(96)00351-6
  2. Cho, H. K., H. H. Kim, D. H. Seo, J. H. Jung, J. H. Park, N. I. Baek, M. J. Kim, S. H. Yoo, J. Cha, Y. R. Kim, and C. S. Park. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49, 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
  3. Gonzalez-Gallego, J., S. Sanchez-Campos, and M. J. Tunon. 2007. Anti-inflammatory properties of dietary flavonoids. Nutr. Hosp. 22, 287-293.
  4. Guo W, E. Kong, and M. Meydani. 2009. Dietary polyphenols, inflammation, and cancer. Nutr. Cancer 61, 807-810. https://doi.org/10.1080/01635580903285098
  5. Ha, S. J., D. H. Seo, J. H. Jung, J. Cha, T. J. Kim, U. W. Kim, and C. S. Park. 2009. Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci. Biotechnol. Biochem. 73, 1505-1512. https://doi.org/10.1271/bbb.80891
  6. Hancock, S. M, M. D Vaughan, and S. G Withers. 2006. Engineering of glycosidases and glycosyltransferases. Curr. Opin. Chem. Biol. 10, 509-519. https://doi.org/10.1016/j.cbpa.2006.07.015
  7. Jaganath, I. B. and A. Crozier. 2010. Dietary flavonoids and phenolic compounds, pp. 2-39, In Fraga, C. G. (eds.), Plant phenolics and human health. Wiley, New Jersey.
  8. Jiang, J. R., S. Yuan, J. F. Ding, S. C. Zhu, H. D. Xu, T. Chen, X. D. Cong, W. P. Xu, H. Ye, and Y. J. Dai. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81, 647-657. https://doi.org/10.1007/s00253-008-1683-z
  9. Jun, S. Y., K. M. Park, K. W. Choi, M. K. Jang, H. Y. Kang, S. H. Lee, K. H. Park, and J. Cha. 2008. Inhibitory effects of arbutin-$\beta$-glycosides synthesized from enzymatic transglycosylation for melanogenesis. Biotechnol. Lett. 30, 743-748. https://doi.org/10.1007/s10529-007-9605-1
  10. Jung, J. H., D. H. Seo, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, T. J. Kim, N. I. Baek, M. Y. Baik, and C. S. Park. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344, 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
  11. Kim, H. K., B. S. Cheon, Y. H. Kim, S. Y. Kim, and H. P. Kim. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophange cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58, 759-765. https://doi.org/10.1016/S0006-2952(99)00160-4
  12. Kim, H. P., K. H. Son, H. W. Chang, and S. S. Kang. 2004. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96, 229-245. https://doi.org/10.1254/jphs.CRJ04003X
  13. Kren, V. and J. Thiem. 1997. Glycosylation employing bio-systems: from enzymes to whole cells. Chem. Soc. Rev. 26, 463-473. https://doi.org/10.1039/cs9972600463
  14. Lai-Xi, W. and H. Wei. 2009. Enzymatic transglycosylation for glycoconjugate synthesis. Curr. Opin. Chem. Biol. 13, 592-600. https://doi.org/10.1016/j.cbpa.2009.08.014
  15. Potocki-Veronese, G., J. L. Putaux, D. Dupeyre, C. Albenne, M. Remaud-Siméon, P. Monsan, and A. Buleon. 2005. Amylose synthesized in vitro by amylosucrase: morphology, structure, and properties. Biomacromolecules 6, 1000-1011. https://doi.org/10.1021/bm049326g
  16. Schneider, J., C. Fricke, H. Overwin, and B. Hofer. 2011. High level expression of a recombinant amylosucrase gene and selected properties of the enzyme. Appl. Microbiol. Biotechnol. 89, 1821-1829. https://doi.org/10.1007/s00253-010-3000-x
  17. Seo, D. H., J. H. Jung, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, T. J. Kim, N. I. Baek, and C. S. Park. 2009. Highly selective biotransformation of arbutin to arbutin-$\alpha$-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B Enzym. 60, 113-118. https://doi.org/10.1016/j.molcatb.2009.04.006
  18. Schmidt, R. R. 1986. New methods for the synthesis of glycosides and oligosaccharides. Are there alternative to the Koenigs-Knorr method? Angew. Chem. Int. Ed. Eng. 25, 212-235. https://doi.org/10.1002/anie.198602121
  19. Shaikh, F. A. and S. G. Withers. 2008. Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyltransferases for improved glycoside synthesis. Biochem. Cell Biol. 86, 169-177. https://doi.org/10.1139/O07-149
  20. Skov, L. K., O. Mirza, A. Henriksen, G. P. De Montalk, M. Remaud-Simeon, P. Sarçabal, R. M. Willemot, P. Monsan, and M. Gajhede. 2001. Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family. J. Biol. Chem. 276, 25273-25278. https://doi.org/10.1074/jbc.M010998200

피인용 문헌

  1. Biosynthesis of Glucosyl Glycerol, a Compatible Solute, Using Intermolecular Transglycosylation Activity of Amylosucrase from Methylobacillus flagellatus KT vol.173, pp.4, 2014, https://doi.org/10.1007/s12010-014-0889-z
  2. Flavonoid glucosylation by non-Leloir glycosyltransferases: formation of multiple derivatives of 3,5,7,3′,4′-pentahydroxyflavane stereoisomers vol.99, pp.22, 2015, https://doi.org/10.1007/s00253-015-6760-5
  3. Fluorescence detection of the transglycosylation activity of amylosucrase vol.532, 2017, https://doi.org/10.1016/j.ab.2017.05.028
  4. Enzymatic modification of daidzin using heterologously expressed amylosucrase in Bacillus subtilis pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0453-7