DOI QR코드

DOI QR Code

Effect of NADPH Oxidase Inhibition on Heme Oxygenase-1 Expression in Human Hepatoma Cell Line HepG2

인간 간암세포주 HepG2에서 NADPH oxidase 활성 억제에 의한 heme oxygenase-1 발현의 조절

  • Lee, Sang-Kwon (Cardiovascular Center, Pusan National University Yangsan Hospital) ;
  • Kim, Kang-Mi (Department of Microbiology & Immunology, Pusan National University School of Medicine) ;
  • Park, Kwang-Hoon (Department of Microbiology & Immunology, Pusan National University School of Medicine) ;
  • Park, Young-Chul (Department of Microbiology & Immunology, Pusan National University School of Medicine)
  • 이상권 (양산부산대학교병원 심혈관센터) ;
  • 김강미 (부산대학교 의학전문대학원 미생물학 및 면역학교실) ;
  • 박광훈 (부산대학교 의학전문대학원 미생물학 및 면역학교실) ;
  • 박영철 (부산대학교 의학전문대학원 미생물학 및 면역학교실)
  • Received : 2011.10.24
  • Accepted : 2011.11.10
  • Published : 2011.11.30

Abstract

Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. In this study, we investigated the role of NADPH oxidase on the expression of HO-1 in human liver hepatoma cell line HepG2. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, markedly inhibited HO-1 expression and the nuclear translocation of transcription factor Nrf2 in cobalt protoporphyrin (CoPP) or hemin-treated HepG2 cells. Similarly, the knockdown of $p47^{phox}$, a cytosolic factor for NADPH oxidase activity, by siRNA inhibited the CoPP-induced expression of HO-1. In addition, GSHmee, an intracellular antioxidant, blocked the expression of HO-1 in CoPP-treated cells. Based on these results, we conclude that the blockage of NADPH oxidase with DPI or $p47^{phox}$ siRNA inhibits CoPP-induced HO-1 expression in HepG2 cells, and also suggest that the expression of HO-1 in CoPP-induced HepG2 cells is associated with increase of intracellular ROS by NADPH oxidase activity.

CoPP는 다양한 세포에서 HO-1의 유전자 발현과 활성을 증가시키는 강력한 유도제로 알려져 있다. HO-1는 세포 및 조직의 손상을 보호한다는 연구가 활발히 진행되고 있으나, 그 작용 기전에 대해서는 아직 잘 모르고 있다. 본 논문에서는 porphyrin 계열의 CoPP의 자극에 의해 유도되는 HO-1 유전자 발현에서 NADPH oxidase의 활성이 미치는 영향을 인간 간암세포주 HepG2에서 조사하였다. 배양 중인 HepG2 세포에서 CoPP는 HO-1의 발현을 농도의존적으로 증가시키는 것을 확인하였다. NADPH oxidase 저해제로 잘 알려져 있는 DPI를 전처리한 후 CoPP로 자극한 세포에서는 HO-1의 발현이 강력하게 억제되는 것으로 나타났다. DPI의 이런 억제 효과가 HO-1의 전사 조절인자 Nrf2의 활성에도 영향을 줄 수 있기 때문에 DPI를 전처리 한 후 CoPP 자극에 의한 Nrf2의 핵으로의 이동을 분석하였다. 그 결과, DPI는 CoPP에 의해 유도되는 Nrf2의 핵으로의 이동과 세포 내 존재하는 양을 감소시키는 것을 확인하였다. 다른 HO-1 발현 유도제로 알려져 있는 hemin에 의한 자극의 경우에도 DPI는 HepG2 세포의 HO-1의 발현을 억제하는 효과를 나타내었다. 그리고, $p47^{phox}$에 대한 siRNA를 사용하여 효과적으로 $p47^{phox}$ 유전자 발현을 knockdown 시켜서 NADPH oxidase의 활성을 억제시키는 방법을 사용하였다. 그 결과, $p47^{phox}$ silencing한 세포에 CoPP를 처리한 경우는 control siRNA를 처리한 세포와 비교할 때 HO-1 발현이 현저히 감소됨을 관찰할 수 있었다. 마지막으로, 세포 내 ROS 생성을 억제하는 GSHmee가 처리된 세포에서는 CoPP나 hemin이 Nrf2의 활성을 증가시키지 못하였고, 그 결과 HO-1의 발현을 유도하지 못하는 것을 알 수 있었는데, 이는 ROS가 CoPP나 hemin에 의한 HO-1 유전자 발현 과정에 중요한 역할을 한다는 것을 의미한다. 이를 종합해 볼 때, 인간 간암세포주 HepG2에서 CoPP나 hemin의 자극에 의한 HO-1 유전자의 발현에는 NADPH oxidase의 활성이 요구된다는 것을 알 수 있고, 그 활성은 세포 내 ROS를 생성시키는 것으로 역할을 한다고 여겨진다.

Keywords

References

  1. Anderson, M. F., M. Nilsson, and N. R. Slims. 2004. Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem. Int. 22, 153-159.
  2. Chan, K., X. D. Han, and Y. W. Kan. 2001. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc. Natl. Acad. Sci. USA 98, 4611-4616. https://doi.org/10.1073/pnas.081082098
  3. Chose, O., P. Sansilverstri-Morel, C. Badier-Commander, F. Bernhardt, J. N. Fabiani, A. Rupin, and T. J. Verbeuren. 2008. Distinct role of nox1, nox2, and p47 phox in unstimulated versus antiotensin II-induced NADPH oxidase activity in human venous smooth muscle cells. J. Cardiovasc. Pharmacol. 51, 131-139. https://doi.org/10.1097/FJC.0b013e31815d781d
  4. Cross, A. R. and O. T. Jones. 1986. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem. J. 237, 111-116.
  5. Doussiere, J., J. Gaillard, and P. V. Vignais. 1999. The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Biochemistry 38, 3694-3703. https://doi.org/10.1021/bi9823481
  6. Durante. W., M. H. Kroll, N. Christodoulides, K. J. Peyton, and A. I. Schafer. 1997. Nitric oxide induces heme oxygenase- 1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ. Res. 80, 557-564. https://doi.org/10.1161/01.RES.80.4.557
  7. Elbirt, K. K. and H. L. Bonkovsky. 1999. Heme oxygenase: recent advances in understanding its regulation and role. Proc. Assoc. Am. Physicians 111, 438-447.
  8. Gozzelino, R., V. Jeney, and M. P. Soares. 2010. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323-354. https://doi.org/10.1146/annurev.pharmtox.010909.105600
  9. Huang, H. C., T. Nguyen, and C. B. Pickett. 2000. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA 97, 12475-12480. https://doi.org/10.1073/pnas.220418997
  10. Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J. D. Engel, and M. Yamamoto. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86. https://doi.org/10.1101/gad.13.1.76
  11. Lee, P. J., B. H. Jiang, B. Y. Chin, N. V. Iyer, J. Alam, G. L. Semenza, and A. M. Choi. 1997. Hypoxia-inducible factot- 1 mediates transcriptional activation of the heme oxygenase- 1 gene in response to hypoxia. J. Biol. Chem. 272, 5375-5381. https://doi.org/10.1074/jbc.272.9.5375
  12. Li, Y. and M. A. Trush. 1998. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem. Biophys. Res. Commun. 253, 295-299. https://doi.org/10.1006/bbrc.1998.9729
  13. Mandal, P., M. T. Pritchard, and L. E. Nagy. 2010. Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-19/heme oxygenase-1 pathway. World J. Gastroenterol. 16, 1330-1336. https://doi.org/10.3748/wjg.v16.i11.1330
  14. Mizuno, K., T. Kume, C. Muto, Y. Takada-Takatori, Y. Izumi, H. Sugimoto, and A. Akaike. 2011. Glutathione biosynthesis via activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant-response element (ARE) pathway is essential for neuroprotective effects of sulforaphane and 6-(methylsulfinyl) hexyl isothiocyanate. J. Pharmacol. Sci. 115, 320-328. https://doi.org/10.1254/jphs.10257FP
  15. O'Donnell, V. B., D. G. Tew, O. T. Jones, and P. J. England. 1993. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem. J. 290, 41-49.
  16. Pandian, R. P., V. K. Kutala, A. Liaugminas, N. L. Parinandi, and P. Kuppusamy. 2005. Lipopolysaccharide-induced alterations in oxygen consumption and radical generation in endothelial cells. Mol. Cell Biochem. 278, 119-127. https://doi.org/10.1007/s11010-005-6936-x
  17. Park, S. E., J. D. Song, K. M. Kim, N. D. Kim, Y. H. Yoo, and Y. C. Park. 2007. Diphenyleneiodonium induces ROS-independent p53 expression and apoptosis in human RPE cells. FEBS Lett. 581, 180-186. https://doi.org/10.1016/j.febslet.2006.12.006
  18. Petrache, I., L. E. Otterbein, J. Alam, G. W. Wiegand, and A. M. Choi. 2000. Heme oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L312-L319.
  19. Sanders, S. A., R. Eisenthal, and R. Harrison. 1997. NADH oxidase activity of human xanthine oxidoreductase - generation of superoxide anion. Eur. J. Biochem. 245, 541-548. https://doi.org/10.1111/j.1432-1033.1997.00541.x
  20. Shan, Y., R. W. Lambrecht, S. E. Donohue, and H. L. Bonkovsky. 2006. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 20, 2651-2653. https://doi.org/10.1096/fj.06-6346fje
  21. Siow, Y. L., K. K. Au-Yeung, C. W. Woo, and O. Karmin. 2006. Homocystene stimulates phosphorylation oh NADPH oxidase $p47^{phox}$ and $p67^{phox}$ subunits in monocytes via protein kinase C activation. Biochem. J. 398, 73-82. https://doi.org/10.1042/BJ20051810
  22. Stuehr, D. J., O. A. Fasehun, N. S. Kwon, S. S. Gross, J. A. Gonzalez, R. Levi, and C. F. Nathan. 1991. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 5, 98-103.
  23. Sumimoto, H., K. Miyano, and R. Takeya. 2005. Molecular composition and regulation of the Nox family NAD(P)H oxidase. Biochem. Biophys. Res. Commun. 338, 677-686. https://doi.org/10.1016/j.bbrc.2005.08.210
  24. Taketani, S., H. Kohno, T. Yoshinaga, and R. Tokunaga. 1989. The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett. 245, 173-176. https://doi.org/10.1016/0014-5793(89)80215-7
  25. Tanigawa, S., M. Fujii, and D. X. Hou. 2007. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 42, 1690-703. https://doi.org/10.1016/j.freeradbiomed.2007.02.017
  26. Tenhunen, R., H. S. Marver, and R. Schmid. 1968. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 61, 748-755. https://doi.org/10.1073/pnas.61.2.748
  27. Tkachev, V. O., E. B. Menshchikova, and N. K. Zenkov. 2011. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry 76, 407-422.
  28. Tsan, M. F., J. E. White, and C. L. Rosano. 1989. Modulation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester. J. Appl. Physiol. 66, 1029-1034.
  29. Yu, R., C. Chen, Y. Y. Mo, V. Hebbar, E. D. Owuor, T. H. Tan, and A. N. Kong. 2000. Activation of mitogen-activated protein kinase pathways induces antioxidant response element- mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 275, 39907-39913. https://doi.org/10.1074/jbc.M004037200
  30. Zhong, J. L., G. P. Edwards, C. Raval, H. Li, and R. M. Tyrrell. 2010. The role of Nrf2 in ultraviolet A mediated heme oxygenase 1 induction in human skin fibroblasts. Photochem. Photobiol. Sci. 9, 18-24. https://doi.org/10.1039/b9pp00068b