DOI QR코드

DOI QR Code

미생물 및 산화적 스트레스에 의한 누에 트랜스페린 발현

Expression of Bombyx mori Transferrin Gene in Response to Oxidative Stress or Microbes

  • 윤은영 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 권오유 (충남대학교 의과대학 해부학교실) ;
  • 황재삼 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 안미영 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 구태원 (농촌진흥청 국립농업과학원 농업생물부)
  • Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kwon, O-Yu (Department of Anatomy, School of Medicine, Chungnam National University) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Ahn, Mi-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Goo, Tae-Won (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
  • 투고 : 2011.10.12
  • 심사 : 2011.11.09
  • 발행 : 2011.11.30

초록

누에 트랜스페린(BmTf)의 면역적 기능을 분석하기 위해 다양한 미생물 및 산화적 스트레스를 부가한 누에에서 전사체 발현을 분석해 보았다. E. coli를 주사한 경우에만 표피와 지방체에서만 특이적으로 정상누에에서 보다 BmTf가 과발현 됨을 확인할 수 있었고, E. coli 및 $FeCl_3$의 경구감염과 $FeCl_3$를 주사한 경우에는 BmTf 전사체의 과발현을 확인할 수 없었다. 또한 세균에 의해서만 발현이 증가되는 항균펩타이드와는 다르게 BmTf는 미생물의 종류에 상관없이 세균, 곰팡이 및 바이러스에 의해 발현이 증가됨을 확인할 수 있었고, 이에 반해 산화적 스트레스제인 $H_2O_2$, Cu 및 $FeCl_3$에 의해서는 발현량의 변화가 없었다. 다양한 protein kinase inhibitor 처리 후 2시간 경과시에는 모든 처리구에서 BmTf 발현량이 증가하였으므로 BmTf는 ERK, PLC, PKA, PI3K, MAPK, 및 JNK에 의해 발현이 down-regulation4을 추정할 수 있었다. BmTf 발현의 주요 유도원을 확인하기 위해 E. coli 및 $FeCl_3$를 각각 경구감염과 주사를 통해 누에 체내에 주입한 후 체내 유리 철 양을 분석한 결과, E. coli 주사 및 경구감염한 누에 체내에 철 양은 정상과 거의 유사한 수준이었고, $FeCl_3$를 주입한 경우 철 양이 상당히 증가되었음을 알 수 있었다. 이상의 결과를 통해 BmTf는 미생물 침입시 과발현되어 생체방어 작용을 수행하고, 기초적인 발현량으로 고유기능인 철 대사 및 산화적 스트레스 방어를 수행함을 추정할 수 있었다.

To analyze the role of Bombyx mori transferrin (BmTf) in response to microbes or oxidative stress, we investigated the level of BmTf transcripts in B. mori treated with various microbes and oxidative stress inducers. BmTf mRNA was mainly expressed in the epidermis and fat in the bodies of B. mori injected with Escherichia coli, and up regulated in response to microbes such as bacteria, fungi, or viruses, but was hardly altered in response to oxidative stress inducers such as $H_2O_2$, Cu, or $FeCl_3$. We also confirmed that BmTf mRNA expression was increased in Bm5 cells treated with ERK, PLC, PKA, PI3K, MAPK, or JNK inhibitors, respectively. To identify the major inducer of BmTf expression, we analyzed the amount of serum iron in the hemolymph of B. mori after injection or feeding with E. coli or $FeCl_3$. The results showed that the amount of serum iron was not changed by injection and feeding with E. coli, although BmTf mRNA was increased by injection with E. coli. On the contrary, injection and feeding with $FeCl_3$ significantly increased the amount of serum iron, although they did not alter the BmTf mRNA level. On the basis of these results, we assume that up-regulation of BmTf in B. mori is closely related to the defense of microorganism, and BmTf may be expressed at the basal constitutive level when it plays a role in iron metabolism by maintaining iron homeostasis and in the insect defense mechanism against oxidative stress.

키워드

참고문헌

  1. Agaisse, H., U. M. Petersen, M. Boutros, B. Mathey-Prevot, and N. Perrimon. 2003. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev. Cell 5, 441-450. https://doi.org/10.1016/S1534-5807(03)00244-2
  2. Aisen, P., Leibman, A. and J. Zweier. 1978. Stoichiometric and site characteristics of the binding of iron to human transferrin. J. Biol. Chem. 253, 1930-1937.
  3. Ampasala, D. R., S. C. Zheng, A. Retnakaran, P. J. Krell, B. M. Arif, and Q. L. Feng. 2004. Cloning and expression of a putative transferrin cDNA of the spruce budworm, Choristoneura fumiferana. Insect Biochem. Mol. Biol. 34, 493-500. https://doi.org/10.1016/j.ibmb.2004.03.002
  4. Boutros, M., H. Agaisse, and N. Perrimon. 2002. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711-722. https://doi.org/10.1016/S1534-5807(02)00325-8
  5. Gregorio, E. D., P. T. Spellman, G. M. Rubin, and B. Lemaitre. 2001. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 98, 12590-12595. https://doi.org/10.1073/pnas.221458698
  6. Gregorio, E. D., P. T. Spellman, P. Tzou, G. M. Rubin, and B. Lemaitre. 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568-2579. https://doi.org/10.1093/emboj/21.11.2568
  7. Gutteridge, J. M. 1994. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. N. Y. Acad. Sci. 738, 201-213. https://doi.org/10.1111/j.1749-6632.1994.tb21805.x
  8. Hultmark, D. 1993. Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 9, 178-183. https://doi.org/10.1016/0168-9525(93)90165-E
  9. Kim, S. H., B. S. Park, E. Y. Yun, Y. H. Je, S. D. Woo, S. W. Kang, K. Y. Kim, and S. K. Kang. 1998. Cloning and expression of a novel gene encoding a new antibacterial peptide from silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 246, 388-392. https://doi.org/10.1006/bbrc.1998.8626
  10. Kimbrell, D. A. 1991. Insect antibacterial proteins: not just for insects and against bacteria. Bioessays 13, 657-663. https://doi.org/10.1002/bies.950131207
  11. Kucharski, R. and R. Maleszka. 2003. Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee, Apis mellifera. J. Insect Sci. 3, 1-8. https://doi.org/10.1672/1536-2442(2003)003[0001:TMOAAE]2.0.CO
  12. Thompson, G. J., Y. C. Crozier, and R. H. Crozier. 2003. Isolation and characterization of a termite transferrin gene up-regulated on infection. Insect Mol. Biol. 12, 1-7. https://doi.org/10.1046/j.1365-2583.2003.00381.x
  13. Valles, S. M. and R. M. Pereira. 2005. Solenopsis invicta transferrin: cDNA cloning, gene architecture, and up-regulation in response to Beauveria bassiana infection. Gene 358, 60-66. https://doi.org/10.1016/j.gene.2005.05.017
  14. Yoshiga, T., V. P. Hernandez, A. M. Fallon, and J. H. Law. 1997. Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc. Natl. Acad. Sci. USA 94, 12337-12342. https://doi.org/10.1073/pnas.94.23.12337
  15. Yun, E. Y., J. K. Lee, O. Y. Kwon, J. S. Hwang, I. Kim, S. W. Kang, W. J. Lee, J. L. Ding, K. H. You, and T. W. Goo. 2009. Bombyx mori transferrin: Genomic structure, expression and antimicrobial activity of recombinant protein. Dev. Comp. Immunol. 33, 1064-1069 https://doi.org/10.1016/j.dci.2009.05.008
  16. Yun., E. Y.,S. H. Kim, S. W. Kang, B. R. Jin, K. Y. Kim, H. R. Kim, M. S. Han, and S. K. Kang. 1997. Molecular cloning and expression of the novel attacin-like antibacterial protein gene isolated from the Bombyx mori. Korean J. Appl. Entomol. 36, 331-340.
  17. Yun, E. Y., S. W. Kang, J. S. Hwang, T. W. Goo, S. H. Kim, B. R. Jin, O. Kwon, and K. Y. Kim. 1999. Molecular cloning and characterization of a cDNA encoding a transferrin homolog from Bombyx mori. Biol. Chem. 380, 1455-1459.