DOI QR코드

DOI QR Code

Inhibition of α-Glucosidase by a Semi-Purified Ethyl Acetate Fraction from Submerged-Liquid Culture of Agaricus blazei Murill

신령버섯균사체 액체배양물의 α-glucosidase 저해 효과

  • Jung, Kwan-Ju (Division of Applied Life Science (BK21 programs), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University) ;
  • Moon, Yeon-Gyu (Division of Applied Life Science (BK21 programs), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University) ;
  • Kwon, Jung-Min (Division of Applied Life Science (BK21 programs), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University) ;
  • Ahn, Chae-Rin (Division of Applied Life Science (BK21 programs), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University) ;
  • Kim, Jeong-Ok (HK Biotech Co., Ltd.) ;
  • Ha, Yeong-Lae (Division of Applied Life Science (BK21 programs), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University)
  • 정관주 (경상대학교 응용생명과학부) ;
  • 문연규 (경상대학교 응용생명과학부) ;
  • 권정민 (경상대학교 응용생명과학부) ;
  • 안채린 (경상대학교 응용생명과학부) ;
  • 김정옥 ((주)HK바이오텍) ;
  • 하영래 (경상대학교 응용생명과학부)
  • Received : 2011.09.07
  • Accepted : 2011.11.18
  • Published : 2011.11.30

Abstract

Natural anti-diabetic semipurified ethyl acetate fraction was isolated from the submerged-liquid culture of Agaricus blaze Murill (AB) in a medium containing soybean flakes. Hot-water extract of AB (HEAB) was prepared by extraction at $121^{\circ}C$ for 60 min, followed by filtering through a filter presser filled with diatomate. The ${\beta}$-glucan-free HEAB, which was a supernatant fraction from HEAB by precipitation in an 80% ethanol solution, was fractionated into hexane, chloroform, ethyl acetate, and butanol fractions. The inhibition of the ${\alpha}$-glucosidase activity by fractions was 59.0, 17.0, 61.6, and 37.9%, respectively, suggesting that ethyl acetate fraction was the most active. A subfraction having a strong ${\alpha}$-glucosidase inhibitory activity (80.4%) was isolated from the ethyl acetate fraction. This subfraction contained isoflavones (genistin and daidzin) and their conjugates with sugars as potent inhibiters of ${\alpha}$-glucosidase activity. These results suggest that the ethyl acetate fraction or HEAB containing isoflavones and their sugars conjugates could be useful sources for controlling blood sugar levels in humans.

${\beta}$-Glucan 분획을 제거한 신령버섯 균사체 액체 배양액(${\beta}$-glucan-free HEAB)으로부터 새로운 형태의 ${\alpha}$-glucosidase 활성저해 소재를 개발하였다. ${\beta}$-Glucan-free HEAB를 용매분획하여 10 mg/ml 농도에서 ${\alpha}$-glucosidase 저해활성을 측정한 결과 EA분획이 가장 강한 활성(61.6% 저해)을 나타내었고, 경구혈당강하제인 acarbose (5 mg/ml; 39.5% 저해) 보다 강하였다. EA분획을 더 분획하여 ${\alpha}$-glucosidase 저해활성이 80.4%인 분획을 얻었다. 이 분획에는 ${\alpha}$-glucosidase 저해 활성을 갖는 daidzin 및 genistin과 같은 isoflavone과 isoflavone의 sugar conjugate된 물질이 함유되어 있었다. 따라서 ${\alpha}$-glucosidase 저해 활성을 나타내는 ${\beta}$-glucan-free HEAB나 EA분획물은 인체의 혈당을 조절할 수 있는 소재로 활용될 수 있을 것이다.

Keywords

References

  1. Bantle, J. P., J. W. Rosett, A. L. Albrigh, C. M. Apovian, N. G. Clark, M. J. Frans, B. J. Hoogwerf, A. H. Lichtensterin, E. M. Davis, A. D. Mooradian, and M. L. Wheeler. 2000. Nutrition recommendation and principles for people with diabetes mellitus (Position Statement). Diabetes Care 23, 843-846.
  2. Choi, C. W., Y. H. Choi, M. R. Cha, J. H. Park, Y. S. Kim, Y. K. Kim, S. U. Choi, G. H. Yon, K. S. Hong, Y. H. Kim, and S. Y. Ryu. 2009. $\alpha$-Glucosidase inhibitiors from seed extract of Paeonia lactiflora. J. Korean Soc. Appl. Biol. Chem. 52, 638-642. https://doi.org/10.3839/jksabc.2009.106
  3. Choi, H. D., H. M. Seog, Y. K. Park, Y. D. Park, and J. A. Kim. 2007. Hypoglycemic effects of basidiomycetes mycelia and cereals fermented with basidiomycetes. J. Korean Soc. Food Sci. Nutr. 36, 1257-1262. https://doi.org/10.3746/jkfn.2007.36.10.1257
  4. Choi, J. M. and S. J. Koo. 2000. Effects of $\beta$-glucan from Agaricus blazei Murill on blood glucose and lipid composition in db/db mice. Korean J. Food Sci. Technol. 32, 1418-1425.
  5. Coward, L. and S. Barnes. 1993. Genistein, daidzein and their $\beta$-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. J. Agr. Food Chem. 41, 1961-1967. https://doi.org/10.1021/jf00035a027
  6. Iwai, K. and M. Hajime. 2007. Ingestion of Apios americana Medikus tuber suppresses blood pressure and improves plasma lipids in spontaneously hypertensive rats. Nutr. Res. 27, 218-224. https://doi.org/10.1016/j.nutres.2007.01.012
  7. Jung, I. C., S. Park, K. S. Park, and C. H. Ha. 1996. Antioxidative effect of fruit body and mycelia extracts of Pleurotus ostreatus. Korean J. Food Sci. Technol. 28, 464-469.
  8. Kawagish, H., R. Inagaki, and T. Kanao. 1989. Fraction and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Carbohydr. Res. 186, 267-273. https://doi.org/10.1016/0008-6215(89)84040-6
  9. Kim, D. H., H. J. Choi, E. A. Bae, M. J. Han, and S. Y. Park. 1998. Effect of artificially cultured Phellinus linteus on harmful intestinal bacterial enzymes and rat intestinal $\alpha$-glucosidases. J. Fd Hyg. Safety 13, 20-23.
  10. Kim, J. I., M. J. Kang, and S. Y. Bae. 2003. Hypoglycemic effect of the methanol extract of soybean sprout in streptozotocin- induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 32, 921-925. https://doi.org/10.3746/jkfn.2003.32.6.921
  11. Kim, S. D. and J. N. Hong. 2004. Isolation and characterization of $\alpha$-glucosidase inhibitor from the fungus Ganoderma lucidum. J. Microbiol. 42, 223-227.
  12. Kim, Y. Y., R. W. Cho, S. H. Chung, and S. J. Koo. 1999. Anti-hyperglycemic effect of Cortex Mori radicis in db/db mice. Korean J. Food Sci. Technol. 31, 1057-1064.
  13. Koh, J. B. 1998. Effects of raw soy flour (yellow and black) on serum glucose and lipid concentrations in streptozotocininduced diabetic rats. J. Korean Soc. Food Sci. Nutr. 27, 313-318.
  14. Koh, J. B. and J. Y. Kim. 2004. Effects of liquid culture of Agaricus blazei Murill on lipid metabolism in rats fed cholesterol diet. J. Life Sci. 14, 531-536. https://doi.org/10.5352/JLS.2004.14.4.531
  15. Kwon, G. J, D. S. Choi, and M. H. Wang. 2007. Biological activities of hot water extracts from Euonymus alatus leaf. Korean J. Food Sci. Technol. 39, 569-574.
  16. Lee, D. S. and S. H. Lee. 2001. Genistein, a soy isoflavone, is a potent $\alpha$-glucosidase inhibitor. FEBS Letters 501, 84-86. https://doi.org/10.1016/S0014-5793(01)02631-X
  17. Lee, S. L., Y. C. Park, and J. B. Kim. 2007. Effects of hambag mushroom (Grifola Frondosa)-powder on hyperglycemia and hyperlipemia in STZ and high fat diet-induced diavetic rats. J. Life Sci. 17, 1387-1393. https://doi.org/10.5352/JLS.2007.17.10.1387
  18. Lee, Y. R., S. H. Nam, and M. Y. Kang. 2006. Hypoglycemic effect of the giant embryonic rice supplementation on streptozotocin- induced diabetic rats. Korean J. Food Sci. Technol. 38, 427-431.
  19. Lim, S. H., Y. H. Park, C. J. Kwon, H. J. Ham, H. N. Jeong, K. H. Kim, and Y. S. Ahn. 2010. Anti-diabetic and hypoglycemic effect of Eleutherococcus spp. J. Korean Soc. Food Sci. Nutr. 39, 1761-1768. https://doi.org/10.3746/jkfn.2010.39.12.1761
  20. Menoli, R. C. R. N., M. S. Mantovani, L. R. Ribeiro, G. Speit, and B. Q. Jordao. 2001. Antimutagenic effects of the mushroom Agaricus blazei Murrill extracts on V79 cells. Mutat. Res. 496, 5-13. https://doi.org/10.1016/S1383-5718(01)00227-3
  21. Mizuno, T., R. Inagaki, T. Kanao, and T. Hagiwara. 1990. Antitumor activity and some properties of water-insoluble hetero-glucans from "Himematsutake" the fruiting body of Agaricus blazei Muril. Agr. Biol. Chem. 54, 2897-2905. https://doi.org/10.1271/bbb1961.54.2897
  22. Nara, K., K. I. Nihei, Y. Ogasawara, H. Koga, and Y. Kato. 2011. Novel isoflavone diglycoside in groundnut (Apios americana Medik). Food Chem. 124, 703-710. https://doi.org/10.1016/j.foodchem.2010.05.107
  23. Oh, T.W., Y. A. Kim, W. J. Jang, J. I. Byeon, C. H. Ryu, J. O. Kim, and Y. L. Ha. 2010. Semipurified fractions from the submerged-culture broth of Agaricus blazei Murill reduce blood glucose levels in streptozotocin-induced diabetic rats. J. Agr. Food Chem. 58, 4113-4119. https://doi.org/10.1021/jf9036672
  24. Ortiz-Andrade, R. R., S. Garcia-Jimenez, P. Castillo-Espana, G. Ramirez-Avila, R. Villalobos-Molina, and S. Estrada-Soto. 2007. $\alpha$-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: ananti-hyperglycemic agent. J. Ethnopharmacol. 109, 48-53. https://doi.org/10.1016/j.jep.2006.07.002
  25. Park, J. H., M. R. Baek, B. H. Lee, G. H. Yon, S. Y. Ryu, Y. S. Kim, S. U. Park, and K. S. Hong. 2009. $\alpha$-Glucosidase and $\alpha$-amylase inhibitory activity of compounds from roots extract of Pueraria thunbergiana. Korean J. Medicinal Crop Sci. 17, 357-362.
  26. Song, C. H., J. H. Kim, B. K. Yang, and K. W. Kim. 1996. Anti-complementary polysaccharides produced from submerged mycelial culture of Pleurotus sajo-caju. Korean J. Mycol. 24, 104-110.
  27. Stratton, I. M., A. I. Adler, H. A. Neil, D. R. Matthews, S. E. Manley, C. A. Cull, D. Hadden, R. C. Turner, and R. R. Holman. 2000. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35), prospective observational study. Br. Med. J. 321, 405-412. https://doi.org/10.1136/bmj.321.7258.405
  28. Tang, U. P., H. X. Zhu, and J. A. Duan. 2008. Two new isoflavone triglycoside from the small branches of Sophora japonica. J. Asian Nat. Prod. Res. 10, 65-70. https://doi.org/10.1080/10286020701273858
  29. Tham, D. M., C. D. Gardner, and W. L. Haskell. 1998. Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metabol. 83, 2223-2235. https://doi.org/10.1210/jc.83.7.2223
  30. Tovar, J. M., O. V. Bazaldua, and R. S. Poursani. 2007. LDL levels in diabetes: how low should they go. J. Fam. Pract. 56, 634-640.
  31. Tsujimoto, T., E. Shioyama, K. Moriya, H. Kawaratani, Y. Shirai, M. Toyohara, A. Mitoro, J. Yamao, H. Fujii, and H. Fukui. 2008. Pneumatosis cystoides intestinalis following alpha- glucosidase inhibitor treatment: a case report and review of the literature. World J. Gastroenterol. 14, 6087-6092. https://doi.org/10.3748/wjg.14.6087
  32. Tsukamoto, C., S. Shumada, K. Igita, S. Kudou, M. Kokubun, K. Okudo, and K. Kitamura. 1995. Factor effecting isoflavone contents in soybean seeds. J. Agr. Food Chem. 43, 1184-1192. https://doi.org/10.1021/jf00053a012
  33. Wansi, J. D., M. C. Lallemand, D. D. Chiozem, F. A. A. Toze, L. M. Mbaze, S. Naharkhan, M. C. Iqbal, F. Tillequin, J. Wandji, and Z. T. Fomum. 2007. $\alpha$-Glucosidase inhibitory constituents from stem bark of Terminalia superba (Combretaceae). Phytochemistry 68, 2096-2100. https://doi.org/10.1016/j.phytochem.2007.02.020
  34. Watanabe J., J. Kawabata, H. Kurihara, and R. Niki. 1997. Isolation and identification of $\alpha$-glucosidase inhibitors from Tochu-cha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177-178. https://doi.org/10.1271/bbb.61.177
  35. Xu, M. S., M. F. Luo, X. H. Xing, and H. Z. Chen. 2006. Characteristics of quercetin transglycosidation catalysed by Penicillium Decumbens glycosidase. Food and Bioproducts Processing 84, 237-241. https://doi.org/10.1205/fbp.05143
  36. Yang, B. K., D. H. Kim, and C. H. Song. 2002. Production of Lentinus edodes Mycelia in submerged culture and It's hyporglycemic effect in diabetic rats. Korean J. Mycol. 30, 131-135. https://doi.org/10.4489/KJM.2002.30.2.131
  37. Yoshiaki, F., K. Hidekazu, O. Koichi, S. Ryo, and E. Takusaburo. 1998. Tumoricidal activity of high molecular weight polysaccharides derived from Agaricus blazei via oral administration in the mouse tumor model. Nippon Shokuhin Kagaku Kaishi 45, 246-252. https://doi.org/10.3136/nskkk.45.246
  38. Yu, H. E., S. M. Cho, G. S. Seo, B. S. Lee, D. H. Lee, and J. S. Lee. 2006. Screening of bioactive compounds from mushroom Pholiota sp. Korean J. Mycol. 34, 15-21. https://doi.org/10.4489/KJM.2006.34.1.015