DOI QR코드

DOI QR Code

인간 전립선 암세포 PC-3 세포에서 Silibinin의 세포주기조절을 통한 세포사멸 유도 효과

Silibinin Inhibits Cell Growth and Induces Apoptosis through Cell-cycle Arrest in PC-3 Prostate Cancer Cells

  • 김상헌 (부산대학교 의학전문대학원 미생물학 및 면역학 교실) ;
  • 김광연 (부산대학교 의학전문대학원 미생물학 및 면역학 교실) ;
  • 유선녕 (부산대학교 의학전문대학원 미생물학 및 면역학 교실) ;
  • 진영랑 (부산대학교 의학전문대학원 미생물학 및 면역학 교실) ;
  • 전현주 (부산대학교 의학연구소) ;
  • 이창민 (예일대학교 호흡기내과) ;
  • 안순철 (부산대학교 의학전문대학원 미생물학 및 면역학 교실)
  • Kim, Sang-Hun (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Kim, Kwang-Youn (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Yu, Sun-Nyoung (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Jeon, Hyun-Joo (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Jin, Young-Rang (Medical Research Institute, Pusan National University) ;
  • Lee, Chang-Min (Department of Internal Medicine, Yale University School of Medicine) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunology, Pusan National University School of Medicine)
  • 투고 : 2011.09.02
  • 심사 : 2011.11.11
  • 발행 : 2011.11.30

초록

Silibinin은 milk thistle에서 분리된 주된 생리활성 성분으로 강력한 항산화제, 항암활성에 대해서 보고되어 있다. 하지만 항암활성에 대한 정확한 기전에 대해서는 밝혀져 있지 않다. 본 연구에서는 인간 전립선 암세포주인 PC-3 세포를 이용하여 세포사멸의 기전을 조사하였다. MTT assay를 통해 세포독성을 확인하였고, PI 염색을 통해 세포주기를 확인하고, Annexin-V/PI 염색을 통한 세포사멸을 확인하였다. 뿐만 아니라 western blot을 이용하여 세포주기 및 세포사멸에 관련된 단백질 발현 정도를 확인하였다. 본 연구의 결과에서 silibinin은 인간 전립선 암세포주인 PC-3 세포에서 세포주기관련 단백질의 발현을 조절하여 세포주기 진행을 억제함으로써 세포사멸을 유도 함을 알 수 있었다.

Milk thistle (silybum marianum) is a famous dietary supplement widely used in the United States and Europe. Silbinin is a major biologically active compound of milk thistle and has strong antioxidant and radical scavenger activities. Anticancer activities, as well as chemopreventive effects on various cancer cell lines, including prostate, lung, colon, skin, and bladder, have also been reported in silbinin. In the present study, we investigated the anticancer effects of silibinin and apoptosis through cell cycle arrest on prostate cancer cell PC-3. We performed cell viability by MTT assay and western blotting to confirm cell cycle check point proteins such as cyclin A/D1/E and cyclin-dependent kinase (CDK) 2/4/6. To quantify silibinin-induced apoptotic cell death of PC-3, Annexin V and PI double staining was performed by flow cytometry, by which its cell distribution was determined. As a result, silibinin inhibited the cell growth of PC-3 cells in a time- and dose-dependent manner, and its treatment resulted in cell cycle arrest at the G1 phase. Also the level of cell cycle check point proteins (cyclin, CDK) was decreased by silibinin in a dose-dependent manner. Taken together, we suggest that apoptosis of prostate cancer cell line PC-3 induced by silibinin is associated with cell cycle arrest through decrease of cell cycle check point proteins, caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage.

키워드

참고문헌

  1. Agarwal, C., A. Tyagi, M. Kaur, and R. Agarwal. 2007. Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis 7, 1463-1470.
  2. Agarwal, C., R. P. Singh, S. Dhanalakshmi, A. K. Tyagi, M. Tecklenburg, R. A. Sclafani, and R. Agarwal. 2003. Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene 22, 8271-8282. https://doi.org/10.1038/sj.onc.1207158
  3. Aktas, H., H. Cai, and G. M. Cooper. 1997. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell Biol. 17, 3850-3857.
  4. Chen, P. N., Y. S. Hsieh, C. L. Chiang, H. L. Chiou, S. F. Yang, and S. C. Chu. 2006. Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. J. Dent. Res. 85, 220-225. https://doi.org/10.1177/154405910608500303
  5. Chen, P. N., Y. S. Hsieh, H. L. Chiou, and S. C. Chu. 2005. Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chem. Biol. Interact. 156, 141-150. https://doi.org/10.1016/j.cbi.2005.08.005
  6. Chu, S. C., H. L. Chiou, P. N. Chen, S. F. Yang, and Y. S. Hsieh. 2004. Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Mol. Carcinog. 40, 143-149. https://doi.org/10.1002/mc.20018
  7. Deep, G., N. H. Oberlies, D. J. Kroll, and R. Agarwal. 2008. Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. Int. J. Cancer 123, 41-50. https://doi.org/10.1002/ijc.23485
  8. Dhanalakshmi, S., G. U. Mallikarjuna, R. P. Singh, and R. Agarwal. 2004. Dual efficacy of silibinin in protecting or enhancing ultraviolet B radiation-caused apoptosis in HaCaT human immortalized keratinocytes. Carcinogenesis 25, 99-106. https://doi.org/10.1093/carcin/bgg188
  9. Dhanalakshmi, S., R. P. Singh, C. Agarwal, and R. Agarwal. 2002. Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappaB and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene 21, 1759-1767. https://doi.org/10.1038/sj.onc.1205240
  10. Eom, K. S., H. J. Kim, H. S. So, R. Park, and T. Y. Kim. 2010. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol. Pharm. Bull. 33, 1644-1649. https://doi.org/10.1248/bpb.33.1644
  11. Flaig, T. W., L. J. Su, G. Harrison, R. Agarwal, and L. M. Glodé. 2007. Silibinin synergizes with mitoxantrone to inhibit cell growth and induce apoptosis in human prostate cancer cells. Int. J. Cancer 120, 2028-2033. https://doi.org/10.1002/ijc.22465
  12. Jackson, S. J. and K. W. Singletary. 2004. Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J. Nutr. 134, 2229-2236.
  13. Jin, C. Y., G. Y. Kim, and Y. H. Choi. 2008. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of akt in human breast cancer MDA-MB-231 cells. J. Microbiol. Biotechnol. 18, 1997-2003.
  14. Kim, D. W., S. L. Kwang, M. K. Kim, Y. H. Cho, and C. H. Lee. 2001. Inhibitory mechanisms of cell cycle regulation induced by indole-3-carbinol in hepatocellular carcinoma HepG2 cells. Korean J. Appl. Microbiol. Biotechnol. 29, 181-185.
  15. Kong, E. H., Y. J. Kim, Y. J. Kim, H. J. Cho, S. N. Yu, K. Y. Kim, J. H. Chang, and S. C. Ahn. 2008. Piplartine induces caspase-mediated apoptosis in PC-3 human prostate cancer cells. Oncol. Rep. 20, 785-792.
  16. Liu, M. J., Z. Wang, Y. Ju, R. N. Wong, and Q. Y. Wu. 2004. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of $Ca^{2+}$ homeostasis. Cancer Chemother. Pharmacol. 55, 79-90.
  17. Li, L., Y. Gao, L. Zhang, J. Zeng, D. He, and Y. Sun. 2008. Silibinin inhibits cell growth and induces apoptosis by caspase activation, down-regulating survivin and blocking EGFR-ERK activation in renal cell carcinoma. Cancer Letters 272, 61-69. https://doi.org/10.1016/j.canlet.2008.06.033
  18. Mateen, S., A. Tyagi, C. Agarwal, R. P. Singh, and R. Agarwal. 2010. Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cells arrest by modulating expression and function of key cell-cycle regulators. Mol. Carcinog. 49, 247-58.
  19. Mohan, S., S. Dhanalakshmi, G. U. Mallikarjuna, R. P. Singh, and R. Agarwal. 2004. Silibinin modulates UVB-induced apoptosis via mitochondrial proteins, caspases activation, and mitogen-activated protein kinase signaling in human epidermoid carcinoma A431 cells. Biochem. Biophys. Res. Commun. 320, 183-189. https://doi.org/10.1016/j.bbrc.2004.05.153
  20. Mokhtari, M. J., N. Motamed, and M. A. Shokrgozar. 2008. Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell. Biol. Int. 32, 888-892. https://doi.org/10.1016/j.cellbi.2008.03.019
  21. Noh, E. M., M. S. Yi, H. J. Youn, B. K. Lee, Y. R. Lee, J. H. Han, H. N. Yu, J. S. Kim, and S. H. Jung. 2011. Silibinin enhances ultraviolet B-induced apoptosis in mcf-7 human breast cancer cells. J Breast Cancer 1, 8-13.
  22. Parnaud, G., P. Li, G. Cassar, P. Rouimi, J. Tulliez, L. Combaret, and L. Gamet-Payrastre. 2004. Mechanism of sulforaphane- induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48, 198-206. https://doi.org/10.1207/s15327914nc4802_10
  23. Pham, N. A., J. W. Jacobberger, A. D. Schimmer, P. Cao, M. Gronda, and D. W. Hedley. 2004. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol. Cancer Ther. 3, 1239-1248.
  24. Prasad, S., J. Kaur, P. Roy, N. Kalra, and Y. Shukla. 2007. Theaflavins induce G2/M arrest by modulating expression of p21waf1/cip1, cdc25C and cyclin B in human prostate carcinoma PC-3 cells. Life Sci. 81, 1323-1331. https://doi.org/10.1016/j.lfs.2007.07.033
  25. Raina, K., S. Rajamanickam, R. P. Singh, G. Deep, M. Chittezhath, and R. Agarwal. 2008. Stage specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in TRAMP Model. Cancer Res. 68, 6822-6830. https://doi.org/10.1158/0008-5472.CAN-08-1332
  26. Sharma, G., R. P. Singh, D. C. Chan, and R. Agarwal. 2003. Silibinin induces growth inhibition and apoptotic cell death in human lung carcinoma cells. Anticancer Res. 23, 2649-2655.
  27. Sherr, C. J. 2000. The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res. 60, 3689-3695.
  28. Singh, R. P., K. Raina, G. Deep, D. Chan, and R. Agarwal. 2009. Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clin. Cancer Res. 15, 613-621. https://doi.org/10.1158/1078-0432.CCR-08-1846
  29. Tiwari, P., A. Kumar, S. Balakrishnan, H. S. Kushwaha, and K. P. Mishra. 2011. Silibinin-induced apoptosis in MCF7 and T47D human breast carcinoma cells involves caspase-8 activation and mitochondrial pathway. Cancer Invest. 1, 12-20.
  30. Tyagi, A. K., C. Agarwal, R. P. Singh, K. R. Shroyer, L. M. Glode, and R. Agarwal. 2003. Silibinin down-regulates survivin protein and mRNA expression and causes caspases activation and apoptosis in human bladder transitional-cell papilloma RT4 cells. Biochem. Biophys. Res. Commun. 312, 1178-1184. https://doi.org/10.1016/j.bbrc.2003.11.038
  31. Tyagi, A., C. Agarwal, G. Harrison, L. M. Glode, and R. Agarwal. 2004. Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI-CDK-cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis 25, 1711-1720. https://doi.org/10.1093/carcin/bgh180
  32. Weinberg, R. A. 1995. The retinoblastoma protein and cell cycle control. Cell 81, 323-330. https://doi.org/10.1016/0092-8674(95)90385-2
  33. Yang, S. H., J. K. Lin, W. S. Chen, and J. H. Chiu. 2003. Anti-angiogenic effect of silymarin on colon cancer LoVo cell line. J. Surg. Res. 113, 133-138. https://doi.org/10.1016/S0022-4804(03)00229-4
  34. Zhu, W., J. S. Zhang, and C. Y. Young. 2001. Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis 22, 1399-1403. https://doi.org/10.1093/carcin/22.9.1399

피인용 문헌

  1. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis vol.16, pp.1, 2016, https://doi.org/10.1186/s12885-016-2516-6