DOI QR코드

DOI QR Code

Effects of Resistance Training on Skeletal Muscle GLUT-4 Protein and LDH Isozyme Expression in Rats

저항성훈련이 흰쥐 골격근의 GLUT-4 단백질 및 LDH 동위효소 발현에 미치는 영향

  • 김연희 (한남대학교 생활체육학과) ;
  • 이상학 (한남대학교 생활체육학과) ;
  • 김종오 (한남대학교 생활체육학과) ;
  • 서태범 (한국체육과학연구원) ;
  • 김영표 (제주대학교 체육학부) ;
  • 백경아 (한남대학교 생활체육학과) ;
  • 윤진환 (한남대학교 생활체육학과)
  • Received : 2011.07.05
  • Accepted : 2011.10.31
  • Published : 2011.11.30

Abstract

The purpose of the present study was to investigate the effect of climbing resistance training on GLUT-4 protein and LDH isozyme activities of the soleus and gastrocnemius muscles in rats. Each experimental group was randomly divided into a control group (n=6) and a resistance exercise (n=6) group. Sprague-Dawley rats were made to climb a 180 cm tower for 12 wk. Weight changes in the resistance exercise group were significantly higher than in the control group (p<0.05). GLUT-4 protein expression of the soleus and gastrocnemius muscles was significantly higher (p<0.05) in the resistance exercise group than in the control group. There was no difference in soleus tissue LDHA4 isozyme activity between the groups. In the case of other LDH isozyme, when compared with the control group, the resistance exercise group showed a significantly higher activity (p<0.05). LDHA4 activity of gastrocnemius muscle tissue was not different between the groups. However, the activity of the resistance exercise group of all the other LDH isozymes was significantly higher than that of the control group (p<0.05). In summary, based on the results of this study, over 12 weeks of resistance training, the total body weight of the rats was reduced and the GLUT-4 activity in the gastrocnemius and soleus muscles was increased. In addition, except for LDH A4 all of the other LDH isozymes activities were increased. These results suggest that climbing resistance training affects the balance of body composition, increases LDH B-type isoenzymes and glucose metabolism capacity, and improves mitochondrial function.

본 연구는 7주령의 S D계 흰쥐를 이용하여 12주 동안의 사다리 오르기 저항성 운동 수행 후 가자미근과 비복근 내 GLUT-4 발현량 및 LDH 동위효소들의 변화를 측정하여 당 대사 및 젖산 기전에 대한 연구로 다음과 같은 결론을 얻었다. 12주간의 사다리 오르기 저항성 운동은 체중감소에 효과적인 것으로 나타났으며, 가자미근 및 비복근 조직 GLUT-4 단백질 발현을 유의하게 증가시키는 것으로 나타났다. 또한 가자미근 및 비복근 조직 LDHA B-type 동위효소의 발현을 유의하게 증가시키는 것으로 나타났다. 본 연구의 결과를 종합해 볼 때 12주간의 저항성훈련은 체중의 감소와 골격근 내 GLUT-4의 증가 그리고 LDH A4 동위효소를 제외한 LDH B-type 동위 효소의 증가와 같은 신체조성의 균형과 당대사능력 및 미토콘드리아의 기능 개선에 영향을 미치는 것으로 사료된다. 추후 연구에서는 휴식시간이나 운동 강도의 차이와 근형태별에 따른 유 무산소적 저항훈련 프로그램의 효과에 따른 다양한 연구가 실시되어야 할 것으로 생각된다.

Keywords

References

  1. An, C. S., S. K. Cho, and J. J. Yum. 2010. Variation of lactate dehydrogenase isozymes in angelfish (Pterophyllum scalare) according to acute environmental change. J. Life Sci. 20, 416-423. https://doi.org/10.5352/JLS.2010.20.3.416
  2. Bell, G. L., C. F. Burant, J. Takeda, and G. W. Gould. 1993. Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268, 161-164.
  3. Brancaccio, P., N. Maffulli, R. Buonauro, and F. M. Limongelli. 2008. Serum enzyme monitoring in sports medicine. Clin. Sports Med. 27, 1-18. https://doi.org/10.1016/j.csm.2007.09.005
  4. Brandt, N., K. De-Bock, E. A. Richter, and P. Hespel. 2010. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am. J. Physiol. Endocrinol. Metab. 299, 215-224.
  5. Brooks, G. A., E. E. Wolfel, G. E. Butterfield, A. Cymerman, A. C. Roberts, R. S. Mazzeo, and J. T. Reeves. 1998. Mammalian fuel utilization during sustained exercise. Am. J. Physiol. 275, 1192-1201.
  6. Chakravarthy, M. V., B. S. Davis. and F. W. Booth. 2000. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J. Appl. Physiol. 89, 1365-1379.
  7. Costill, D. L., J. Daniels, W. Evans, W. Fink, G. Krahenbuhl, and B. Saltin. 1976. Skeletal muscle enzymes and fiber composition in male and female track athletes. J. Appl. Physiol. 40, 149-154.
  8. Devlin, J. T., M. F. Hirshman, E. S. Horton, and E. D. Horton. 1987. Enhanced peripheral insuline and spanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes 36, 434-439. https://doi.org/10.2337/diabetes.36.4.434
  9. Dohm, A. G. 2000. Exercise effects on muscle insulin signalling and action. Regulation of skeletal muscle GLUT-4 expression by exercise. J. Appl. Physiol. 93, 782-787.
  10. Donovan, C. M. and M. J. Pagliassotti. 1990. Enhanced efficiency of lactate removal after endurance training. J. Appl. Physiol. 68, 1053-1058.
  11. Enoki, T., Y. Yoshida, H. Hatta, and A. Bonen. 2003. Exercise training alleviates MCT1 and MCT4 reductions in heart and skeletal muscles of STZ-induced diabetic rats. J. Appl. Physiol. 94, 2433-2438.
  12. Fleck, S. J. and E. J. Kraemer. 1997. Designing Resistance Training Programs. 2nd eds. Champaign, IL: Human Kinetic, 1-115.
  13. Fowler, W. M., G. W. Grandner, H. H. Kazerunian, and W. A. Lauvstad. 1968. The effects of exercise on serum enzymes. Arch. Phys. Med. Rehabil. 49, 4555-4565.
  14. Gladden, L. B. 2004. Lactate metabolism a new paradigm for the third millennium. J. Physiol. 558, 5-30. https://doi.org/10.1113/jphysiol.2003.058701
  15. Gotshalk, L. A., C. C. Loebel, B. C. Nindl, M. Putukian, W. J. Sebastianelli, R. U. Newton, K. Hakkinen, and W. J. Kraemer. 1997. Hormonal responses of multiset versus single- set heavy-resistance exercise protocols. Can. J. Appl. Physiol. 22, 244-255. https://doi.org/10.1139/h97-016
  16. Green, H. J., T. A. Duhamel, G. P. Holloway, J. W. Moule, D. W. Ranney, A. R. Tupling, and J. Ouyang. 2008. Rapid upregulation of GLUT-4 and MCT-4 expression during 16 h of heavy intermittent cycle exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, 594-600. https://doi.org/10.1152/ajpregu.00699.2007
  17. Guezennec, C. Y., M. Giaoui, J. P. Voignier, H. Legrand, and E. Fournier. 1986. Evolution of plasma level of LDH, CPK and myoglobin at the 100 km race and triathlon. Sci. Sports 16, 255-260.
  18. Hall, G. 2000. Lactate as a fuel for mitochondrial respiration. Acta Physiol. Scand. 168, 643-656. https://doi.org/10.1046/j.1365-201x.2000.00716.x
  19. Hayashi, T., J. F. Wojtaszewski, and L. J. Goodyear. 1997. Exercise regulation of glucose transport in skeletal muscle. Am. J. Physiol. 273, 1039-1051. Review.
  20. Holloszy, J. O. 2003. A forty-year memoir of research on the regulation of glucose transport into muscle. Am. J. Physiol. Endocrinol. Metab. 284, 453-467.
  21. Holloszy, J. O. 2005. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 99, 338-343. Review. https://doi.org/10.1152/japplphysiol.00123.2005
  22. Itoh, H., T. Ohkuwa, Y. Yamazaki, T. Shimoda, A. Wakayama, S. Tamura, T. Yamamoto, Y. Sato, and M. Miyamura. 2000. Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. Int. J. Sports Med. 21, 369-374. https://doi.org/10.1055/s-2000-3777
  23. Ivy, J. L. 2004. Muscle insulin resistance amended with exercise training : role of GLUT4 expression. Med. Sci. Sports Exerc. 36, 1207-1211. Review.
  24. Jennifer, M. S. and B. B. Teffret. 2001. Role of vitamine E and oxidative stress in exercise. Nutrition 17, 809-814. https://doi.org/10.1016/S0899-9007(01)00639-6
  25. Jessen, N., R. Pold, E. S. Buhl, L. S. Jensen, O. Schmitz, and S. Lund. 2003. Effects of AICAR and exercise on insulin- stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J. Appl. Physiol. 94, 1373-1379.
  26. Kang, H. J. 2007. Exercise physiologic mechanisms related to effective exercise prescription in type 2 diabetes mellitus. Korean J. Health Promot. Dis. Prev. 7, 9-16.
  27. Kawanaka, K., I. Tabata, S. Katsuta, and M. Higuchi. 1997. Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training. J. Appl. Physiol. 83, 2043-2047.
  28. Kemper, W. F., S. L. Lindstedt, L. K. Hartzler, J. W. Hicks, and K. E. Conley. 2001. Different between observed and predicted energy costs at rest and during exercise in three subsistence- level population. Proc. Natl. Acad. Sci. 98, 723-728. https://doi.org/10.1073/pnas.011387598
  29. Khayat, Z. A., N. Patel, and A. Klip. 2002. Exercise- and insulin-stimulated muscle glucose transport: distinct mechanisms of regulation. Can. J. Appl. Physiol. 27, 129-151. https://doi.org/10.1139/h02-010
  30. Kim, S. S., E. B. Kang, B. S. Kim, Y. H. Lim, H. S. Eum, C. H. Kim, J. Y. Park, M. H. Jung, K. H. Jung, I. H. Cho, and S. J. Lee. 2007. Effect of endurance training on GLUT-4, LDH, MCT-1 and COX-4 in skeletal muscles of Goto-Kakizaki rats. Korean J. Exerc. Nutrition 11, 97-107.
  31. Lauritzen, H. P., H. Galbo, T. Toyoda, and L. J. Goodyear. 2010. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes 59, 2134-244. https://doi.org/10.2337/db10-0233
  32. Lee, K. S., M. H. Kim, S. M. Hong, S. M. Huh, S. M. Won, S. H. Kim, Y. M. Yoon, and J. Y. Cho. 2003. The effect of exercise training and catechins supplementation on skeletal muscle GLUT-4 protein and serum lipids in obese Zucker rats. J. Sport Leisure Studies 20, 1263-1276.
  33. Lee, S. H. and J. H. Yoon. 2005. Effects of different exercise intensities on cytosolic and mitochondrial LDH isozymes of cardiac muscle in rats. J. Life Sci. 15, 80-86. https://doi.org/10.5352/JLS.2005.15.1.080
  34. Lee, S. H., R. Elisabeth, H. Barton, S. Lee, and P. F. Roger. 2004. Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats. J. Appl. Physiol. 96, 1097-1104. https://doi.org/10.1152/japplphysiol.00479.2003
  35. Marcell, T. J. 2003. Sarcopenia: causes, consequences, and preventions. J. Gerontol. A. Biol. Sci. Med. Sci. 58, 911-916. Review. https://doi.org/10.1093/gerona/58.10.M911
  36. Ohkuwa, T. and M. Miyamura. 1986. Plasma LDH activity and LDH isozymes after 400 m and 3,000 m runs in sprint and long distance runners. J. Sports Med. Phys. Fitness 26, 362-368.
  37. Ohman, E. M., K. K. Toe, and A. H. Johason. 1982. Abnormal cardiac enzyme responses after strenuous exercise alternative diagnostic aids. Br. Med. J. 285, 1523-1526. https://doi.org/10.1136/bmj.285.6354.1523
  38. Rasmussen, H. N., G. V. Hall, and U. F. Rasmussen. 2002. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle. J. Physiol. 5412, 575-580.
  39. Reven, S., S. S. Balci, H. Pepe, F. Kurtoglu, A. E. Erol, and H. Akkus. 2010. Short duration exhaustive running exercise does not modify lipid hydroperoxide, glutathion peroxidase and catalase. J. Sports Med. Phys. Fitness 50, 235-240.
  40. Richard, R. W., A. Hossein, M. B. Joseph, C. P. Alvin, V. M. Wieb, M. P. Laureta, and K. G. Daryl. 2005. Citing articles Compartmentalization of transport and phosphorylation of glucose in a hepatoma cell line. Biochem. J. 386, 245-253. https://doi.org/10.1042/BJ20040901
  41. Rodrigues, B. M., E. Dantas, B. F. Desalles, H. Miranda, A. T. Koch, J. M. Willardson, and R. Simao. 2010. Creatine kinase and lactate dehydrogenase responses after upper-body resistance exercise with different rest intervals. J. Strength Con. Res. 24, 1657-1662. https://doi.org/10.1519/JSC.0b013e3181d8e6b1
  42. Roelants, M., C. Delecluse, and S. M. Verschueren. 2004. Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J. Am. Geriatr. Soc. 52, 901-908. https://doi.org/10.1111/j.1532-5415.2004.52256.x
  43. Roit, J., E. Iori, U. Guiducci, R. Emanuele, G. Robusch, P. Bandini, A. Gnudi, and E. Roti. 1981. Serum concentrations of myoglobin, creatine phosphokinase & lactic dehydrogenase after exercise in trained & untrained athletics. J. Sports Med. Phys. Fitness 21, 113-118.
  44. Russel, J. B. and K. L. Robyn. 1999. Hypoxic repression of lactate dehydrogenase-B in retina. Exp. Eye Res. 69, 685-693. https://doi.org/10.1006/exer.1999.0745
  45. Sahlin, K., M. Fernstrom, M. Svensson, and M. Tonkonogi. 2002. No Evidence of an intracellular lactate shuttle in rat skeletal muscle. J. Physiol. 541, 569-574. https://doi.org/10.1113/jphysiol.2002.016683
  46. Sandri, M., C. Sandri, A. Gilbert, C. Skurk, E. Calabria, A. Picard, K. Walsh, S. Schiaffino, S. H. Lecker, and A. L. Goldberg. 2004. Foxo transcription factors induce the atrophy- related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399-412. https://doi.org/10.1016/S0092-8674(04)00400-3
  47. Sjodin, A. M., A. H. Forslund, K. R. Westerterp, A. B. Andersson, J. M. Forslund, and L. M. Hambraeus. 1996. The influence of physical activity on BMR. Med. Sci. Sports Exerc. 28, 85-91. https://doi.org/10.1097/00005768-199601000-00018
  48. Val, A. L. and V. M. F. Almeida. 1995. Fishes of the Amazon and Their Environment. pp. 55-56, Springer-Verlag, Berlin.
  49. Van-Pelt, R. E., P. P. Jones, K. P. Davy, C. A. Desouza, H. Tanaka, B. M. Davy, and D. R. Seals. 1997. Regular exercise and the age-related decline in resting metabolic rate in women. J. Clin. Endocrinol. Metab. 82, 3208-3212. https://doi.org/10.1210/jc.82.10.3208
  50. Winder, W. W., E. B. Taylor, and D. M. Thomson. 2006. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med. Sci. Sports Exerc. 38, 1945-1949. https://doi.org/10.1249/01.mss.0000233798.62153.50
  51. Wojtaszewski, J. F., B. F. Hansen, K. B. Gade, J. F. Markuns, L. J. Goodyear, and E. A. Richter. 2000. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 49, 325-331. https://doi.org/10.2337/diabetes.49.3.325
  52. Yoon, J. H., H. H. Lee, K. H. Chung, J. O. Kim, S. H. Ryu, I. G. Jeong, Y. P. Kim, and B. S. Oh. 2003. Effects of exercise on morphological change of pancreatic Langerhans in aging rats. Exercise science: Official J. Korea Exercise Science Academy 12, 115-122.
  53. Zachwieja, J. J., S. R. Smith, I. Sinha-Hikim, N. Gonzalez- Cadavid, and S. Bhasin. 1999. Plasma myostatin-immunoreactive protein is increased after prolonged bed rest with low-dose T3 administration. J. Gravit. Physiol. 6, 11-15.