DOI QR코드

DOI QR Code

쏘라페닙과 홍삼추출물간의 약물상호작용

Drug Interaction between Ginseng Extract (GE) and Sorafenib

  • Lee, Nam-Hee (Department of Pharmacology, Pusan National University School of Korean Medicine) ;
  • Park, Ho-Jae (Department of Pharmacology, Pusan National University School of Korean Medicine) ;
  • Rho, Ja-Sung (Department of Pharmacology, Pusan National University School of Korean Medicine) ;
  • Kim, Mi-Kyung (National Research and Development Center for Hepatobiliary Diseases, Pusan National University Yangsan Hospital) ;
  • Lee, Yu-Kyoung (National Research and Development Center for Hepatobiliary Diseases, Pusan National University Yangsan Hospital) ;
  • Cho, Eun-A (National Research and Development Center for Hepatobiliary Diseases, Pusan National University Yangsan Hospital) ;
  • Heo, Jeong (Department of Gastroenterology, Pusan National University Hospital) ;
  • Cho, Mong (Department of Gastroenterology, Pusan National University Yangsan Hospital) ;
  • Hwang, Tae-Ho (Department of Pharmacology, Pusan National University School of Korean Medicine)
  • 투고 : 2011.10.06
  • 심사 : 2011.11.01
  • 발행 : 2011.11.30

초록

쏘라페닙은 간암 치료제로 승인된 유일한 약이다. 전세계 암환자들의 인삼추출물 사용이 증가 되고 있지만 쏘라페닙과의 상호작용에 대한 연구는 부족하다. 사람의 간암 세포주와 생쥐 모델을 사용하여 쏘라페닙과 인삼추출물의 약물 상호작용을 알아보고자 하였다. 저농도 인삼추출물 투여시 암세포주의 성장과 pERK(phosphorylation of extracellular signal-regulated kinase)의 증가가 관찰되었고 고농도 투여시 암세포 억제와 pERK 감소가 관찰되었다. 성장 사이클이 없는 세포에서 쏘라페닙의 항암 효과가 감소한 반면 저농도 인삼 투여 시 항암 효능이 증진되어 나타났다. PD98059 (ERK 인산화 억제재)은 효과적으로 ERK 인산화를 억제하여 인삼추출물의 쏘라페닙 감작 작용을 억제시켰다. 생쥐 간암 세포주 모델에서, 저농도 인삼추출물은 다소 암세포 크기를 증가 시켰지만 고농도 투여시 감소시켰다. 그러나, 인삼추출물과 쏘라페닙 동시 투여시 항암 효능은 현저히 증가되었다. 정상조직에서 저농도 인삼에 의해 PERK 증가가 관찰되었으며 이것은 홍삼에 의한 독성 증가와 관련될 것으로 추정되었다. 결론적으로 인삼추출물과 쏘라페닙은 농도에 따라 항암효능을 증가 시킬 수 있음을 보여 주었지만 독성의 가능성도 함께 증가시켰다. 인삼추출물과 쏘라페닙 약물 상호작용에 대한 더 면밀한 연구가 필요할 것으로 보인다.

Sorafenib is the only approved systemic, therapeutic agent for hepatocellular carcinoma (HCC). The use of Ginseng Extract (GE) in cancer patients is growing worldwide; however, drug interaction between sorafenib and GE has not been illuminated. Four different human cancer cell lines including HepG2 were used and immunocompetent mice were implanted subcutaneously with a mouse HCC cell line. Treatment with low dose GE stimulated cell growth, while a high dose inhibited growth. pERK (phosphorylation of extracellular signal-regulated kinase) was concomitantly increased and decreased respective of different doses of GE. Antitumoral effect of sorafenib decreased in non-proliferating phase cells but was sensitized after low dose GE (LDG) treatment. PD98059 (ERK phosphorylation inhibitor) efficiently blocked ERK phosphorylation, resulting in loss of sorafenib sensitization even after LDG treatment. In the HCC mouse model, LDG alone slightly increased tumor size while sorafenib alone significantly decreased it. However, a combination of LDG and sorafenib significantly decreased tumor size compared with sorafenib alone. Increase of pERK was observed in some normal mice organs and mild inflammatory change was observed in some of these organs, suggesting pERK activation by LDG may cause unexpected toxicity in normal cells. GE, dose-dependently, induced stimulation or inhibition in some human cancer cell lines. Combinational use of GE and sorafenib possibly potentiated an antitumoral response to sorafenib. pERK level has been provided as a potential predictive marker for sorafenib. Our result may suggest GE's dual effects in relation to pERK level in HCC cancer cell lines, and that certain doses of GE can sensitize sorafenib.

키워드

참고문헌

  1. Abou-Alfa, G. K., L. Schwartz, S. Ricci, D. Amadori, A. Santoro, A. Figer, J. De Greve, J. Y. Douillard, C. Lathia, B. Schwartz, I. Taylor, M. Moscovici, and L. B. Saltz. 2006. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 24, 4293-4300. https://doi.org/10.1200/JCO.2005.01.3441
  2. Alex, A. A., J. R. Molina, S. J. Mandrekar, R. Marks, J. R. Reid, G. Croghan, L. J. Hanson, J. R. Jett, C. Xia, C. Lathia, and R. Simantov. 2007. Phase I trial of sorafenib in combination with gefitinib in patients with refractory or recurrent non-small cell lung cancer. Clin. Cancer Res. 13, 2684-2691. https://doi.org/10.1158/1078-0432.CCR-06-2889
  3. Chao, Z., Y. Shoyama, and T. Hiroyuki. 2006. Pharmacokinetic study of ginsenosides Rb1 and Rg1 in rat by ELISA using anti-ginsenosides Rb1 and Rg1 monoclonal antibodies. Am. J. Chinese Med. 34, 1069-1081. https://doi.org/10.1142/S0192415X06004533
  4. Chowdhury, S. J., M. G. Larkin, and M. E. Gore. 2008. Recent advances in the treatment of renal cell carcinoma and the role of targeted therapies. Eur. J. Cancer 44, 2152-2161. https://doi.org/10.1016/j.ejca.2008.06.028
  5. Barton, D. L., G. S. Soori, B. A. Bauer, J. A. Sloan, P. A. Johnson, C. Figueras, S. Duane, B. Mattar, H. Liu, P. J. Atherton, B. Christensen, and C. L. Loprinzi. 2010. Pilot study of Panax quinquefolius (American ginseng) to improve cancer-related fatique: a randomized, double-blind, dose-finding evaluation: NCCTG trial N03CA. Support Care Cancer 18, 179-187. https://doi.org/10.1007/s00520-009-0642-2
  6. DiGianni, L. M., J. E. Garber, and E. P. Winer. 2002. Complementary and alternative medicine use among women with breast cancer. J. Clin. Oncol. 20, 34S-38S.
  7. Finn, R. S. 2010. Development of molecularly targeted therapies in hepatocellular carcinoma: where do we go now? Clin. Cancer Res. 16, 390-397. https://doi.org/10.1158/1078-0432.CCR-09-2084
  8. Fishbein, A. B., C. Z. Wang, L. X. Li, S. R. Mehendale, S. Sun, H. H. Aung, and C. S. Yuan. 2009. Asian ginseng enhances the anti-proliferative effect of 5-Fluorouracil on human colorectal cancer: comparison between white and red ginseng. Arch. Pharm. Res. 32, 505-513. https://doi.org/10.1007/s12272-009-1405-9
  9. Guida, T., S. Anaganti, L. Provitera, R. Gedrich, E. Sullivan, S. M. Wilhelm, M. Santoro, and F. Carlomagno. 2007. Sorafenib inhibits imatinibresistant KIT and platelet-derived growth factor receptor h gatekeeper mutants. Clin. Cancer Res. 13, 3363-3369. https://doi.org/10.1158/1078-0432.CCR-06-2667
  10. Guo, T., N. P. Agaram, G. C. Wong, G. Hom, D. D'Adamo, R. G. Maki, G. K. Schwartz, D. Veach, B. D. Clarkson, S. Singer, R. P. DeMatteo, P. Besmer, and C. R. Antonescu. 2007. Sorafenib inhibits the imatinibresistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor. Clin Cancer Res. 13, 4874-4881. https://doi.org/10.1158/1078-0432.CCR-07-0484
  11. Heo, J., J. B. Caroline, A. Moon, C. W. Kim, R. Patt, M. K. Kim, Y. K. Lee, S. Y. Oh, H. Y. Woo, K. Parato, J. Rintoul, T. Falls, T. Hickman, B. G. Rhee, J. C. Bell, D. H. Kirn, and T. H. Hwang. 2011. Sequential therapy with JX-594, A targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol. Ther. 19, 1170-1179. https://doi.org/10.1038/mt.2011.39
  12. Hoshino, R., S. Tanimura, K. Watanabe, T. Kataoka, and M. Kohno. 2001. Blockade of the extracellular signal-regulated kinase pathway induces marked G1 cell cycle arrest and apoptosis in tumor cells in which the pathway is constitutively activated. J. Biochem. 276, 2686-2692.
  13. Keating, G. M. and A. Santoro. 2009. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 69, 223-240. https://doi.org/10.2165/00003495-200969020-00006
  14. Kim, J. H., J. Y. Oh, B. H. Park, D. E. Lee, J. S. Kim, H. E. Park, M. S. Roh, J. E. Je, J. H. Yoon, S. H. Thorne, D. Kirn, and T. H. Hwang. 2006. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol. Ther. 14, 361-370. https://doi.org/10.1016/j.ymthe.2006.05.008
  15. Koo, H. H., H. J. Jeong, I. Y. Choi, H. J. An, P. D. Moon, S. J. Kim, S. Y. Jee, J. Y. Um, S. H. Hong, S. S. Shin, D. C. Yang, Y. S. Seo, and H. M. Kim. 2007. Mountain grow ginseng induces apoptosis in HL-60 cells and its mechanism have little relation with TNF-alpha production. Am. J. Chinese Med. 35, 169-182. https://doi.org/10.1142/S0192415X07004710
  16. Li, X. L., C. Z. Wang, S. R. Mehendale, S. Sun, Q. Wang, and C. S. Yuan. 2009. Panaxadiol, a puriWed ginseng component, enhances the anti-cancer eVects of 5-Xuorouracil in human colorectal cancer cells. Cancer Chemoth Pharm. 64, 1097-1104. https://doi.org/10.1007/s00280-009-0966-0
  17. Ling, Y., L. Yong, and L. Chang-Xiao. 2006. Metabolism and pharmacokinetics of ginsenosides. Asian J. PD and PK. 6, 103-120.
  18. Sagar, S. M., D. Yance, and R. K. Wong. 2006. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1. Curr. Oncol. 13, 14-26.
  19. Shin, H. R., J. Y. Kim, T. K. Yun, G. Morgan, and H. Vainio. 2000. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control. 11, 565-576.4. https://doi.org/10.1023/A:1008980200583
  20. Wang, W., Y. Zhao, E. R. Rayburn, D. L. Hill, H. Wang, and R. Zhang. 2007. In vitro anti-cancer activity and structure- activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemoth Pharm. 59, 589-601. https://doi.org/10.1007/s00280-006-0300-z
  21. Wang, X. T., J. L. Martindale, and N. J. Holbrook. 2000. Requirement for erk activation in cisplatin-induced apoptosis. J. Biochem. 275, 9435-39443.
  22. Wilhelm, S. M., C. Carter, L. Tang, D. Wilkie, A. McNabola, H. Rong, C. Chen, X. Zhang, P. Vincent, M. McHugh, Y. Cao , J. Shujath, S. Gawlak, D. Eveleigh, B. Rowley, L. Liu, L. Adnane, M. Lynch, D. Auclair, I. Taylor, R. Gedrich, A. Voznesensky, B. Riedl, L. E. Post, G. Bollag, and P. A. Trail. 2004. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099-7109. https://doi.org/10.1158/0008-5472.CAN-04-1443
  23. Woessmann, W., X. B. Chen, and A. Borkhardt. 2002. Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemoth Pharm. 50, 397-409. https://doi.org/10.1007/s00280-002-0502-y
  24. Yun, T. K. 2001. Panax ginseng-a non-organ-specific cancer preventive? Lancet Oncol. 2, 49-55. https://doi.org/10.1016/S1470-2045(00)00196-0
  25. Yun, T. K., S. H. Kim, and Y. S. Lee. 1995. Trial of new medium-term model using benzo-(a)pyrene induced lung tumor in newborn mice. Anticancer Res. 15, 839-846.
  26. Yun, T. K., S. H. Kim, and Y. R. Oh. 1987. Medium-term (nine weeks) method for assay of preventive agents against tumor. J. Korean Cancer Assoc. 1-7.
  27. Zhang, Z., X. Zhou, H. Shen, D. Wang, and Y Wang. 2009. Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC Med. 41.
  28. Zhu, A. X. Predicting the response to sorafenib in hepatocellular carcinoma: where is the evidence for phosphorylated extracellular signaling-regulated kinase (pERK)? BMC Med. 42.