DOI QR코드

DOI QR Code

후빙기조륙운동 보정을 통한 한반도 주변 해역의 절대해수면 변화 분석

Analysis of Absolute Sea-level Changes around the Korean Peninsula by Correcting for Glacial Isostatic Adjustment

  • 김경희 (인하대학교 지리정보공학과) ;
  • 박관동 (인하대학교 지리정보공학과) ;
  • 임채호 (국립해양조사원 해양관측과) ;
  • 한동훈 ((주)미래해양 해양부)
  • Kim, Kyeong-Hui (Department of Geoinformatic Engineering, Inha University) ;
  • Park, Kwan-Dong (Department of Geoinformatic Engineering, Inha University) ;
  • Lim, Chae-Ho (Department of Oceanographic, Korea Hydrographic and Oceanographic Administration) ;
  • Han, Dong-Hoon (Department of Marine, Mirae Ocean Corporation)
  • 투고 : 2011.07.06
  • 심사 : 2011.11.14
  • 발행 : 2011.12.31

초록

국립해양조사원 39개소 조위관측소의 후빙기조륙운동(Glacial Isostatic Adjustment, GIA)에 의한 지각변동 속도를 ICE-3G와 ICE-5G 모델로 예측하였다. 또한 위도 $32^{\circ}-38.5^{\circ}N$, 경도 $124^{\circ}-132^{\circ}E$ 범위의 한반도 지역을 $0.5^{\circ}{\times}0.5^{\circ}$ 격자로 분할하고 각 격자점에서의 GIA 지각변동 속도를 계산하였다. 그 결과 ICE-3G 모델의 경우 한반도 GIA 수직 지각변동은 평균 0.33 mm/yr이고, ICE-5G 모델의 경우 평균 1.21 mm/yr의 속도로 지각변위가 발생하는 것으로 나타났다. 최신 Ice model인 ICE-5G 모델을 사용할 경우 한반도에서도 약 1 mm/yr 이상의 비교적 높은 GIA 수직 지각변동이 발생하므로 절대해수면 변동을 산정하기 위해서 GIA에 의한 수직변위를 보정해야 함을 확인하였다. 따라서 국립해양조사원에서 제공하는 13개 조위관측소의 상대해수면 변동률에서 ICE-5G 모델에 의한 GIA 지각변동 속도를 보정하여 절대해수면 변동률을 결정하였다. 절대해수면 상승속도를 분석한 결과 GIA 지각변동 속도를 보정한 절대해수면 변동률은 한반도 해역에서 평균 5.04 mm/yr의 상승속도를 나타냈으며, 제주 해역은 평균 8.84 mm/yr로 다른 해역보다 높은 이상 상승률을 나타냈다.

Based on the ICE-3G and ICE-5G ice models, we predicted the velocities of crustal uplift caused by Glacial Isostatic Adjustment (GIA) at 39 tide gauge sites operated by Korea Hydrographic and Oceanographic Administration (KHOA). We also divided the Korean peninsula in the ranges of $32-38.5^{\circ}N$ and $124-132^{\circ}E$ in $0.5^{\circ}{\times}0.5^{\circ}$ grids, and computed the GIA velocities at each grid point. We found that the average uplift rates due to GIA in South Korea were 0.33 and 1.21 mm/yr for ICE-3G and ICE-5G, respectively. Because the GIA rates were relatively high at ~1 mm/yr when the updated ice model ICE-5G was used, we concluded that the GIA effect cannot be neglected when we compute the absolute sea level (ASL) rates around the Korean peninsula. In this study, we corrected the ICE-5G GIA velocities from the relative sea level rates provided by KHOA and we computed the ASL rates at 13 tide gauge stations. As a result, we found that the average ASL velocity around the Korean peninsula was 5.04 mm/yr. However, the ASL rates near Jeju island were abnormally higher than the other areas and the average was 8.84 mm/yr.

키워드

참고문헌

  1. 국립해양조사원, 2009, 해수면 변동 정밀분석 및 예측. 국토해양부 국립해양조사원, 11-1611234-000049-10, 155 p.
  2. 김주환, 2009, 지형학-기후지형학. 동국대학교출판부, 서울, 438 p.
  3. Argus, D.F., Peltier, W.R., and Watkins, M.M., 1999, Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy. Journal of Geophysical Research, 104, 29077-29093. https://doi.org/10.1029/1999JB000237
  4. Baker, T.F., 1993, Absolute sea level measurements, climate change and vertical crustal movements. Global Planetary Change, 8, 149-159. https://doi.org/10.1016/0921-8181(93)90022-G
  5. Bevis, M., Kendrick, E., Smalley Jr,R., Dalziel, I., Caccamise, D., Sasgen, I., Helsen, M., Taylor, F.W., Zhou, H., Brown, A., Raleigh, D., Willis, M., Wilson, T., and Konfal, S., 2009, Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochemistry Geophysics Geosystems, 10, Q10005. https://doi.org/10.1029/2009GC002642
  6. Clark, J.A., Farrell, W.E., and Peltier, W.R., 1978, Global changes in postglacial sea level: A numerical calculation. Quaternary Research, 9, 265-287. https://doi.org/10.1016/0033-5894(78)90033-9
  7. Craymer, M.R., Henton, J.A., and Piraszewksi, M., 2009, Predicting present-day rates of glacial isostatic adjustment using a smoothed GPS-based velocity field for the reconciliation of NAD83 reference frames in Canada. Workshop on Monitoring North American Geoid Change. http://www.ngs.noaa.gov/GRAV-D/2009 Workshop/Presentations/Henton_NAD83GPS09.pdf (검색일: 2009. 5. 23.)
  8. Dahlen, F.A., 1976, The passive influence of the oceans upon the rotation of the Earth. Geophys. Journal of the Royal Astronomical Society, 46, 363-406. https://doi.org/10.1111/j.1365-246X.1976.tb04163.x
  9. Dziewonski, A.M. and Anderson, D.L., 1981, Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25, 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
  10. Farrell, W.E. and Clarke, J.A., 1976, On postglacial sea level. Geophysical Journal of the Royal Astronomical Society, 46, 647-667. https://doi.org/10.1111/j.1365-246X.1976.tb01252.x
  11. Forte, A.M. and Peltier, W.R., 1994, The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations. Advances in Geophysics, 36, 94-119.
  12. Johansson, J.M., Davis, J.L., Scherneck, H-G, Milne, G.A., and Vermeer, M., 2002, Continuous GPS measurements of postglacial adjustment in Fennoscandia: I. Geodetic Results. Journal of Geophysical Research, 107, 2157-2184. https://doi.org/10.1029/2001JB000400
  13. Justino, F., Timmermann, A., Merkel, U., and Perltier, W.R., 2006, An Initial Intercomparison of Atmospheric and Oceanic Climatology for the ICE-5G and ICE-4G Models of LGM Paleotopography. Jounrnal of Climate, 19, 3-14. https://doi.org/10.1175/JCLI3603.1
  14. Mitrovica, J.X., Milne, G.A., and Davis, J.L., 2001, Glacial isostatic adjustment on a rotating earth. Geophysical Journal International, 147, 562-578. https://doi.org/10.1046/j.1365-246x.2001.01550.x
  15. Mitrovica, J.X. and Milne, G.A., 2003, On post-glacial sea level: I. General theory. Geophysical Journal International, 154, 253-267. https://doi.org/10.1046/j.1365-246X.2003.01942.x
  16. Peltier, W.R., 1974, The impulse response of a Maxwell Earth. Reviews of Geophysics and Space Physics, 12, 649-669. https://doi.org/10.1029/RG012i004p00649
  17. Peltier, W.R., 1976, Glacial isostatic adjustment II: The inverse problem. Geophysical Journal of the Royal Astronomical Society, 46, 669-706. https://doi.org/10.1111/j.1365-246X.1976.tb01253.x
  18. Peltier, W.R. and Andrews, J.T., 1976, Glacial isostatic adjustment I: The forward problem. Geophysical Journal of the Royal Astronomical Society, 46, 605-646. https://doi.org/10.1111/j.1365-246X.1976.tb01251.x
  19. Peltier, W.R., Farrell, W.E., and Clark, J.A., 1978, Glacial isostasy and relative sea level: A global finite element model. Tectonophysics, 50, 81-110. https://doi.org/10.1016/0040-1951(78)90129-4
  20. Peltier, W.R., 1994, Ice age paleotopography. Science, 265, 195-201. https://doi.org/10.1126/science.265.5169.195
  21. Peltier, W.R., 1995, VLBI baselines from the ICE-4G model of postglacial rebound. Geophysical Research Letters, 22, 465-468. https://doi.org/10.1029/94GL03213
  22. Peltier, W.R., 1996, Mantle viscosity and ice age ice sheet topography. Science, 273, 1359-1364. https://doi.org/10.1126/science.273.5280.1359
  23. Peltier, W.R., 1998, Postglacial variations in the level of the sea: Implications for climate dynamics and solidearth geophysics. Reviews of Geophysics, 36, 603-689. https://doi.org/10.1029/98RG02638
  24. Peltier, W.R., 2002, Global glacial isostatic adjustment: Palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model. Journal of Quaternary Science, 17, 491-510. https://doi.org/10.1002/jqs.713
  25. Peltier, W.R., Shennan, I., Drummond, R., and Horton, B., 2002, On the postglacial isostatic adjustment of the British Isles and the shallow viscoelastic structure of the Earth. Geophysical Journal International, 148, 443-475. https://doi.org/10.1046/j.1365-246x.2002.01586.x
  26. Peltier, W.R., 2004, Global glacial isostasy and the surface of the ice age Earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Science, 32, 111-149. https://doi.org/10.1146/annurev.earth.32.082503.144359
  27. Rostami, K., Peltier, W.R., and Mangini, A., 2000, Quaternary marine terraces, sea level changes and uplift history of Patagonia, Argentina: Comparisons with predictions of the ICE-4G (VM2) model of the global process of glacial isostatic adjustment. Quaternary Science Reviews, 19, 1495-1525. https://doi.org/10.1016/S0277-3791(00)00075-5
  28. Tarasov, L. and Peltier, W.R., 2002, Greenland glacial history and local geodynamic consequences. Geophysical Journal International, 150, 198-229. https://doi.org/10.1046/j.1365-246X.2002.01702.x
  29. Tushingham, A.M. and Peltier, W.R., 1991, ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. Journal of Geophysical Research, 96, 4497-4523. https://doi.org/10.1029/90JB01583
  30. Peltier homepage: http://www.atmosp.physics.utoronto.ca/-peltier/data.php (검색일: 2009. 3. 11.)

피인용 문헌

  1. Holocene Sea Level Changes in the Eastern Yellow Sea:A Brief Review using Proxy Records and Measurement Data vol.36, pp.6, 2015, https://doi.org/10.5467/JKESS.2015.36.6.520