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ON ROBUSTLY POSITIVELY EXPANSIVE MAPS

Manseob Lee* and Gang Lu**

Abstract. In this paper, we show that every C1-robustly posi-
tively expansive map is expanding.

1. Introduction

Let M be a compact smooth Riemannian manifold, and let f : M →
M be a Cr(r ≥ 1) map. Let d : M × M → R be a metric on M
and e > 0. We say that f is e-positively expansive if any x 6= y, there
exists n ≥ 0, such that d(fn(x, fn(y)) ≥ e. In positively expansivity, an
important class is the expanding ones defined as follows: we say that a
map is expanding if there are constants C > 0 and γ > 1 such that

‖Dxfn(v)‖ ≥ Cγn‖v‖
for any x ∈ M. Recall that a C1 map f on M is said to be topologically
transitive if there is dense orbit; that is, M = {fn(x) : n ≥ 0} for some
x ∈ M.

Since M is connected, it can be checked that the set of periodic points,
P (f), of f is dense(see, [7]).

Very recently, in [1] Arbieto proved that any C1-persistently posi-
tively expansive map is expanding. Here, we introduce the definition
of the C1-persistently positively expansive of a C1 map f : M → M if
there exists a C1-neighborhood U(f) of f such that for any g ∈ U(f),
there exists e(g) > 0 such that g is e(g)-positively expansive, where e(g)
is the expansive constant for g. In this paper, we don’t change to select
the expansive constant in the initial condition. That is, the expansive
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constant doesn’t change about the functions of the C1-nearby f. It is
more stronger condition than Arbieto’s definition.

Definition 1.1. We say that a C1 map f : M → M is C1-robustly
positively expansive map if there exist e > 0 and a C1-neighborhood
U(f) of f such that for any g ∈ U(f), g is e-positively expansive.

In this paper, we shall prove the following result:

Theorem 1.2. Let M be a compact manifold. Any C1-robustly
positively expansive map f : M → M is expanding.

2. Proof of Theorem 2.5

The following lemma is in [1, 4].

Lemma 2.1. Let f be a C1-map and U(f) a C1-neighborhood of f .
Then there exists a neighborhood U0(f) ⊂ U(f) of f and a ε > 0 such
that, if for any g ∈ U0(f), S = {p1, . . . , pm} ⊂ M is a finite set, and linear
maps Li : TpiM → Tg(pi)M satisfying ‖Li −Dpig‖ ≤ ε for i = 1, . . . ,m,
there exists g1 ∈ U0(f) such that g(x) = g(x) if x ∈ {p1, . . . , pm} and
Dpig = Li. Moreover, if U is a neighborhood of S, then choose α > 0
and g1 ∈ U0(f) such that

(i) g1(x) = g(x), for every x ∈ S ∪ (M \ S),
(ii) g1(x) = expg(pi) ◦Dpig ◦ exp−1

pi
(x), for x ∈ Bα(pi),

where exp is the exponential map of the Riemannian manifold M.

Let f be a C1 map on M and e > 0. By Lemma 2.1, if f is C1-
robustly expansive then there is a C1-neighborhood U0(f) ⊂ U(f) of f
such that for any g ∈ U0(f), g is e- positively expansive.

Lemma 2.2. Let U0(f) be the C1-neighborhood of f in the above.
Suppose that f is C1-robustly positively expansive. For any g ∈ U0(f),
and p as a periodic point for g with period π(p) if λ is an eigenvalue of

Dgπ(p)(p) then |λ| > 1.

Proof. Let M be a C1-robustly positively expansive for a C1-map f .
Then there exist a C1-neighborhood U0(f) ⊂ U(f) of f and an expansive
constant e > 0 such that for any g ∈ U0(f), g is e-positive expansive. Let
λ be an eigenvalue of Dgπ(p)(p). We will derive a contradiction. Suppose
that |λ| ≤ 1. To simplify, assume that gπ(p)(p) = g(p) = p.



On robustly positively expansive maps 61

Let ε > 0 be as in Lemma 2.1. Take a linear map L : TpM → TpM
such that ‖L−Dpg‖ < ε. Then one can choose 0 < α < e/4 such that

g1(x) =
{

expp ◦ L ◦ exp−1
p (x) if x ∈ Bα(p),

g(x) if x /∈ B4α(p),

where Bα(p) = {x ∈ M : d(x, p) ≤ α}. Then g1(p) = g(p) = p.
If λ < 1 then TpM = Es

p. Thus there exists 0 < γ < 1 such that

‖Dpg
n(v)‖ ≤ γn‖v‖

for v ∈ TpM. One can choose 0 < ε1 < α/4 such that expp(Es
p(ε1)) ⊂

Bα(p). Then for some γ1 > 1,

gn
1 |expp(Es

p(ε1)) < gn−1
1 |expp(Es

p(ε1)) < · · · < d(x, y) < ε1,

for n ∈ N. Thus we can take distinct two points x, y ∈ expp(Es
p(ε1)) ⊂ M

such that
d(gn

1 (x), gn
1 (y)) < ε1 < α < e,

for all n ∈ N. This is a contradiction.
If λ = 1, then for some k ∈ N, gk

1 (x) = id(x) = x for x ∈ Bα(p), where
id is the identity map. In this case, g1 is not e-positively expansive.

Finally, if λ ≤ 1 then TpM = Ec
p ⊕Es

p, where Ec
p associated to λ = 1

and Es
p associated to λ < 1. Note that let A ⊂ M. If M is positively

expansive of f, then A have to positive expansive of f . One can choose
0 < ε1 < α/4 such that expp(Es

p(ε1)) ⊂ Bα(p). Then choose k > 0 such
that gk

1 |expp(Ec
p(ε1)) = id, where id is the identity map. Thus we can take

distinct two points x, y ∈ expp(Es
p(ε1)) ⊂ M with d(x, y) < ε1 such that

d(gn
1 (x), gn

1 (y)) = d(x, y) < ε1 < α < e,

for all n ∈ N. But, x 6= y. This is a contradiction.

It is known that f is positively expansive, f is open and local diffeo-
morphism since M is a manifold without boundary(see [3]).

Remark 2.3. Let M be a compact Riemannian manifold and let
f : M → M be a C1 map. If f is a positively expansive open map then
f is topological transitive.

For δ > 0, a sequence of points {xi}n
i=0 ⊂ M(0 < n ≤ ∞) is called

a δ-pseudo-orbit of f if d(f(xi), xi+1) < δ for all 0 ≤ i ≤ n − 1. We
say that f has the shadowing property if for any ε > 0 there is δ > 0
such that for any δ-pseudo-orbit {xi}n

i=0 of f there is y ∈ M satisfying
d(f i(y), xi) < ε for all 0 ≤ i ≤ n− 1.
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In [7], Sakai showed that any positively expansive open map has the
shadowing property.

Denote by M(M) the set of all probability on the Borel σ-algebra of
M endowed with the usual topology such that for µn, µ ∈M(M),

µn → µ ⇔
∫

φdµn →
∫

φdµ,

for every continuous functions φ : M → R. For a continuous map f, we
denote by Mf (M), the set of all f -invariant elements of M(M). Take
x ∈ M and define a probability µn ∈M(M)(n > 0) by

µn(x) =
1
n

n−1∑

j=0

δfj(x).

Here δx is the so-called Dirac measure supported at point x. Then it is
known that µn → µ ∈Mf (M)(n →∞).

For any x ∈ M and v ∈ TxM , let

λ(x, v) = lim
k→∞

1
k

log ‖Dxfk(v)‖
whenever this limit exists. It is well known that given an invariant mea-
sure µ, the limit exists for µ-almost all x by the Oselecdec theorem([5])
and it is called Lyapunov exponent. Lyapunov exponents are often used
to characterize the non-uniform rates of expansion or contraction of tan-
gent vectors.

Note that by the Oseledets theorem([5]), there exists a set B ⊂ M
such that µ(B) = 1, for any µ ∈M(M) with the following properties.

• There is a measurable function s : B → Z+ with s ◦ f = s.
• If x ∈ B there are real numbers λ1(x) < · · · < λs(x)(x).
• If x ∈ B there are linear subspaces

{0} = V(0)(x) ⊂ · · · ⊂ Vs(x)(x) = TxM.

• If x ∈ B and 0 < i ≤ s(x) then

lim
n→∞

1
n

log ‖Dxfn(v)‖ = λ(x),

for any v ∈ Vi(x) \ Vi−1(x).

Lemma 2.4. Let µ be a finite invariant measure of f. Suppose that f is
C1-robustly positively expansive. Then for µ-almost all x, the Lyapunov
exponents λi(x) are positive.

Proof. See, [1] Lemma 2.3.
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Theorem 2.5. [2] Let f : M → M be a C1-local diffeomorphism.
If the Lyapunov exponents of every f -invariant probability measure are
positive, then f is uniformly expanding.

Proof of Theorem 1.2 : Suppose that f is C1-robustly positively
expansive. Since f is positively expansive, f is a C1-local diffeomor-
phism and it is open. Also, f has the shadowing property. Since M is
connected, M = P (f). By Remark 2.3, f is transitive. Thus M = P (f)
is transitive set and µ(P (f)) = 1 for µ ∈ Mf (M). By the assumption
and Lemma 2.1, there is U0(f) ⊂ U(f) of f such that for any g ∈ U0(f),
g is positively expansive. For x ∈ P (g), let λ be an eigenvalue of Dxg.
By Lemma 2.2,

λ(x) = lim
n→∞

1
n

log ‖Dxgn‖

≥ lim
n→∞

1
n

log |λ|n ≥ lim
n→∞ log |λ|

= log |λ| > 0.

Thus λ(x) is positive for µ-almost all x. Therefore, by Theorem 2.5, f
is uniformly expanding.
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