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STOCHASTIC CALCULUS FOR BANACH SPACE

VALUED REGULAR STOCHASTIC PROCESSES

Byoung Jin Choi*, Jin Pil Choi**, and Un Cig Ji***

Abstract. We study the stochastic integral of an operator valued
process against with a Banach space valued regular process. We
establish the existence and uniqueness of solution of the stochas-
tic differential equation for a Banach space valued regular process
under the certain conditions. As an application of it, we study a
noncommutative stochastic differential equation.

1. Introduction

Since the classical stochastic calculus initiated by Itô [4], the stochas-
tic calculus for standard Brownian motion has been extensively devel-
oped with wide applications to fields with random phenomena. The most
classical Itô integrator is real valued Brownian motion or martingale pro-
cess, but it is naturally extended to Hilbert space or Banach space valued
processes, and then the stochastic calculus for Hilbert (or Banach) space
valued processes studied by many mathematician [1, 2, 3, 5, 7, 6, 9],
etc. In particular, stochastic integrals for Hilbert space valued functions
against with martingale-valued measures with values in the Hilbert space
has been established in [2], and stochastic integrals for deterministic Ba-
nach space valued functions against with compensated Poisson random
measures has been established in [1]. Also, a stochastic integration for
Hilbert space valued martingales using projection operators was studied
in [8]. On the other hand, Pettis-type stochastic integral of (determinis-
tic) operator valued functions against with Wiener process was studied
in [9], and, more generally, Pettis-type stochastic integral of Banach
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space valued deterministic functions against with Banach space valued
Lévy processes has been established in [7]. In [3], the author constructed
a stochastic integration for operator valued processes against with Ba-
nach space valued processes with independent increments by using the
notions of p-smoothable Banach space and Lp-primitive process.

The aim of this paper is to study the noncommutative stochastic
calculus in terms of the stochastic calculus for Banach space valued
processes. For our purpose, we first construct the stochastic integrals
of operator (on Banach space) valued processes against with a Banach
space valued p-regular process, and establish the existence and unique-
ness of solution of the stochastic differential equation for a Banach space
valued p-regular process Z given by

dX(t) = σ(t,X(t))dν(t) + ρ(t,X(t))dZ(t),

X(0) = X0,

where ν is a Radon measure on R+ and Z is a Banach space valued
p-regular process with respect to a Radon measure µ on R+. As an
application of it, we study the noncommutative stochastic calculus.

The paper is organized as follows. In Section 2, we introduce a Ba-
nach space valued p-regular process, and then the stochastic integral of
an operator valued process against with a Banach space valued p-regular
process is constructed. In Section 3, we prove the existence and unique-
ness of solution of the stochastic differential equation for a Banach space
valued p-regular processes. Finally, in Section 4 we study the stochastic
integral of an operator (on a Banach algebra) valued process against
with a Banach algebra valued p-regular process.

2. Banach space valued stochastic integral

Let (Ω,F , P ) be a (complete) probability space and B a separable
Banach space with norm ∥ · ∥B. Let {Ft | t ≥ 0} be a filtration of sub
σ-algebra of F , i.e., Fs ⊆ Ft for any 0 ≤ s ≤ t. We assume that the
filtration {Ft | t ≥ 0} is right continuous, i.e., for any t ≥ 0,

Ft =
∩
s>t

Fs.

Definition 2.1. Let 1 ≤ p < ∞ be given. A B-valued process X
is said to be p-regular with respect to a Radon measure µ on R+ (or
simply p-regular) if there exists a constant C1 ≥ 0 such that for any
0 ≤ s < t,

E
[
∥X(t)−X(s)∥pB

]
≤ C1µ((s, t]).
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From now on, let Z = {Z(t) | t ≥ 0} be a B-valued p-regular process,
which has independent increments and satisfies the following conditions:

(i) for any t ≥ 0, Z(t) is Ft-measurable,
(ii) for any 0 ≤ s ≤ t, Z(t)− Z(s) is independent of Fs.

Let L(B) be the space of all bounded linear operators on B with the
operator norm ∥ · ∥op and P the σ-algebra generated by sets of the form:

(s, t]× F for 0 ≤ s < t < ∞, F ∈ Fs and {0} × F for F ∈ F0,

and then P is called a predictable σ-algebra. A stochastic process X
is said to be predictable process if X is P-measurable. A L(B)-valued
process Φ is said to be elementary if there exists a sequence 0 = t0 < t1 <
· · · < tk = T < ∞ and a sequence Φt0 ,Φt1 , · · · ,Φtk−1

of L(B)-valued
random variables such that Φtm are Ftm-measurable and

Φ(t) = Φtm for t ∈ (tm, tm+1], m = 0, 1, · · · , k − 1.

Put

Lp
pred([0, T ]) ≡ Lp

pred([0, T ]× Ω, µ× P ;L(B)),

the space of all (predictable) L(B)-valued processes, and so for any
Φ ∈ Lp

pred([0, T ]), the following conditions:

(i) Φ is predictable process,

(ii)
∫ T
0 E [∥Φ(t)∥pop] dµ(t) < ∞

hold, where µ is the Radon measure on R+ related to the B-valued
p-regular process Z.

Let Ep([0, T ], Z) be a linear space consisting of L(B)-valued elemen-
tary (predictable) processes in Lp

pred([0, T ]) such that for any

(2.1) Φ =

k−1∑
m=0

Φtm1(tm,tm+1] ∈ Ep([0, T ], Z)

for 0 = t0 < t1 < · · · < tk = T < ∞, the following inequality is satisfied:
(2.2)

E

[∥∥∥∥∥
k−1∑
m=0

Φtm(Ztm+1 − Ztm)

∥∥∥∥∥
p

B

]
≤ C2

k−1∑
m=0

E
[
∥Φtm(Ztm+1 − Ztm)∥

p
B

]
for some constant C2 ≥ 0, and let Ip

pred([0, T ], Z) be the completion of

Ep([0, T ], Z) with respect to the norm on Lp
pred([0, T ]). Note that if for

any L(B)-valued elementary process Φ given as in (2.1), (2.2) holds,
then Ep([0, T ], Z) becomes a linear space of all L(B)-valued elementary
processes and, since Z is a p-regular process, Z is a Lp-primitive [3].
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Now, the stochastic integral of an elementary process Φ in Ep([0, T ], Z)
against with the Banach space valued p-regular process Z is defined by

I(Φ) :=

∫ T

0
Φ(s)dZ(s) :=

k−1∑
m=0

Φtm(Ztm+1 − Ztm).

Then the stochastic integral I is a linear operator from Ep([0, T ], Z) into
Lp(Ω;B). We have the following theorem.

Theorem 2.2. For any elementary process Φ in Ep([0, T ], Z), I(Φ) ∈
Lp(Ω;B) and

(2.3) E
[
∥I(Φ)∥pB

]
≤ C

∫ T

0
E[∥Φ(t)∥pop]dµ(t)

for some C ≥ 0.

Proof. For any elementary process Φ ∈ Ep([0, T ], Z) given as in (2.1),
we obtain that

E
[
∥I(Φ)∥pB

]
= E

[∥∥∥∥∥
k−1∑
m=0

Φtm(Ztm+1 − Ztm)

∥∥∥∥∥
p

B

]

≤ C2

k−1∑
m=0

E
[
∥Φtm(Ztm+1 − Ztm)∥

p
B

]
≤ C2

k−1∑
m=0

E
[
∥Φtm∥pop∥Ztm+1 − Ztm∥

p
B

]
.

Since ∥Φtm∥op and ∥Ztm+1 −Ztm∥B are independent, and Z is p-regular
with respect to a Radon measure µ on R+, we have

E
[
∥I(Φ)∥pB

]
≤ C2

k−1∑
m=0

E
[
∥Φtm∥pop

]
E
[
∥Ztm+1 − Ztm∥

p
B

]
≤ C1C2

k−1∑
m=0

E
[
∥Φtm∥pop

]
µ((tm, tm+1])

= C

∫ T

0
E
[
∥Φ(t)∥pop

]
dµ(t)

for the constant C = C1C2, which implies (2.3).

Now, we extend I to Ip
pred([0, T ], Z). By the construction, it is ob-

vious that, if Φ ∈ Ip
pred([0, T ], Z), then there exists a sequence {Φn} of
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elementary processes in Ep([0, T ], Z) such that

lim
n→∞

∫ T

0
E
[
∥Φ(t)− Φn(t)∥pop

]
dµ(t) = 0.

Thus by Theorem 2.2, the sequence {I(Φn)} is Cauchy sequence in
Lp(Ω;B). Therefore, we define

I(Φ) = lim
n→∞

I(Φn) in Lp(Ω;B),

which is called the stochastic integral of the L(B)-valued process Φ
against with the Banach space valued p-regular process Z and denoted

by I(Φ) :=
∫ T
0 Φ(s)dZ(s). Then the following theorem is obvious.

Theorem 2.3. For any L(B)-valued process Φ in Ip
pred([0, T ], Z), we

have

E
[
∥I(Φ)∥pB

]
≤ C

∫ T

0
E[∥Φ(t)∥pop]dµ(t) for some C ∈ R+.

By Theorem 2.3, the linear operator I from Ip
pred([0, T ], Z) into L2(Ω;

B) is continuous.

Example 2.4. Let m be a (complete) measure on R+ and {M(t) | t ≥
0} a {Ft}-adapted B-valued process which has independent increments
and locally Bochner integrable with respect to the measure m. We
assume that M(0) = 0. Put

Z(t) =

∫ t

0
M(s)dm(s) (Bochner integral).

Then Z(t) is a {Ft}-adapted B-valued process, 1-regular with respect
to the measure µ on R+ defined by

µ((s, t]) =

∫ t

s
E [∥M(u)∥B] dm(u), s ≤ t.

In fact, we obtain that

E [∥Z(t)− Z(s)∥B] ≤
∫ t

s
E [∥M(u)∥B] dm(u) = µ((s, t]).

It is obvious that {Z(t) | t ≥ 0} has independent increments. More-
over, for any elementary L(B)-valued processes Φ ∈ L1([0, T ] × Ω,m ×
P ;L(B)), we have

E

[∥∥∥∥∥
k−1∑
n=1

Φtn(Ztn+1 − Ztn)

∥∥∥∥∥
B

]
≤

k−1∑
n=0

E
[
∥Φtn(Ztn+1 − Ztn)∥B

]
.
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Therefore, for the process Φ ∈ Ip
pred([0, T ], Z) , the stochastic integral∫ T

0 Φ(s)dZ(s) is well-defined.

Example 2.5. Let H be a separable Hilbert space with inner prod-
uct ⟨·, ·⟩H and {B(t) | t ≥ 0} a H-valued Q-Brownian motion, where
Q is a symmetric nonnegative operator in L(H). For each t ≥ 0,

let Ft = σ ({B(s) | s ≤ t}). Let H0 = Q1/2(H) be the subspace of H

with inner product ⟨h1, h2⟩0 = ⟨Q1/2h1, Q
1/2h2⟩H and Φ a L2(H0,H)-

valued process in L2([0, T ]×Ω;L2(H0,H)), where L2(H0,H) is the space
of all Hilbert-Schmidt operators from H0 to H with norm ∥Φ∥2L2

=

Tr[ΦQΦ∗]. For any L2(H0,H)-valued elementary process Φ in L2([0, T ]×
Ω;L2(H0,H)) given as in (2.1), the stochastic integral

I(Φ) :=

∫ T

0
Φ(s)dB(s) :=

k−1∑
n=0

Φtn(Btn+1∧T −Btn∧T )

is well-defined, and then {B(t) | t ≥ 0} is 2-regular Hilbert space valued
process with respect to Lebesgue measure m on R+ and we have

L2([0, T ]× Ω;L2(H0,H)) ⊂ I2
pred([0, T ], B).

For more study, we refer to [6].

3. Stochastic differential equation

In this section, we study the existence and uniqueness of solution of
the stochastic differential equation:

(3.1)

{
dX(t) = σ(t,X(t))dµ1(t) + ρ(t,X(t))dZ(t)

X(0) = X0,

where µ1 is a Radon measure on R+ and Z is a B-valued p-regular
process with respect to a Radon measure µ2 on R+. Let 1 ≤ p < ∞.
We fix T > 0 and impose the following conditions for σ and ρ in the
equation (3.1):

(C1) the map σ : [0, T ]×B → B is measurable,
(C2) the map ρ : [0, T ] × B → L(B) is measurable, and for any X ∈

Ip
pred(B,Z), ρ(·, X) ∈ Ip

pred(B,Z),

(C3) there exist a nonnegative functionK ∈ L1([0, T ], dµ1)∩L1([0, T ], dµ2)
such that for any x, y ∈ B and t ∈ [0, T ],

∥σ(t, x)− σ(t, y)∥pB + ∥ρ(t, x)− ρ(t, y)∥pop ≤ K(t)∥x− y∥pB,
∥σ(t, x)∥pB + ∥ρ(t, x)∥pop ≤ K(t)(1 + ∥x∥pB).
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The integral representation of the Equation (3.1) is given by

(3.2) X(t) = X0+

∫ t

0
σ(s,X(s))dµ1(s)+

∫ t

0
ρ(s,X(s))dZ(s), P−a.s..

The main result of this section is the following.

Theorem 3.1. Assume that X0 is a F0-measurable B-valued random
variable with E[∥X0∥pB] < ∞. If the conditions (C1)−(C3) are satisfied,
then there exists a unique solution X of (3.1) such that

(3.3) E

[∫ T

0
K(s)∥X(s)∥pBdµi(s)

]
< ∞, i = 1, 2,

where the function K is given in the condition (C3).

Proof. We first prove the uniqueness of the solution for (3.1). Let

X(t) and X̂(t) be the solutions of (3.1) with same initial values X0. Put

σ̂(s,X(s)) = σ(s,X(s))− σ(s, X̂(s))

and
ρ̂(s,X(s)) = ρ(s,X(s))− ρ(s, X̂(s)).

Then by (C3), Theorem 2.3 and the Hölder’s inequality, for the q with
1/p+ 1/q = 1 we obtain that

E
[
∥X(t)− X̂(t)∥pB

]
≤ {2µ1([0, t])}p/qE

[∫ t

0
∥σ̂(s,X(s))∥pBdµ1(s)

]
+ 2p/qCE

[∫ t

0
∥ρ̂(s,X(s))∥popdµ2(s)

]
≤ 2p/q

∫ t

0
K(s)E

[
∥X(s)− X̂(s)∥pB

]
dµ(s),

where

(3.4) dµ(s) = µ1([0, t])
p/qdµ1(s) + Cdµ2(s)

and the constant C is given as in Theorem 2.3. Therefore, the function

V (t) = E
[
∥X(t)− X̂(t)∥pB

]
, t ∈ [0, T ]

satisfies

V (t) ≤ 2p/q
∫ t

0
K(s)V (s)dµ(s).

Then by the Gronwall’s inequality, we conclude that V (t) = 0 for all

t ≥ 0, and so X(t) = X̂(t) P -a.s. for all t ≥ 0, which implies the proof
of the uniqueness.
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For the proof of the existence, we use the Picard method. Define
Y (0)(t) = X0 and Y (k)(t), inductively, as follows

Y (k+1)(t) = X0 +

∫ t

0
σ(s, Y (k)(t))dµ1(s) +

∫ t

0
ρ(s, Y (k)(t))dZ(s),

then the similar computations used for the uniqueness give

E [Z(t; k)] ≤ 2p/q
∫ t

0
K(s)E [Z(t; k − 1)] dµ(s)

for k ≥ 1 and t ≤ T , where Z(t; k) = ∥Y (k)(t) − Y (k−1)(t)∥pB. By
repeating this argument, we obtain that

E[Z(t; k + 1)] ≤ 2p/q
∫ t

0
K(t1)E [Z(t1; k)] dµ(t1)

≤ 2pk/q
∫ t

0

∫ t1

0
· · ·
∫ tk−1

0
K(t1)K(t2) · · ·K(tk)

×E [Z(tk; 1)] dµ(tk) · · · dµ(t2)dµ(t1).

On the other hand, by (C3) and the Hölder’s inequality

E [Z(tk; 1)] ≤ 2p/q
{
µ1([0, tk])

p/q

∫ tk

0
K(s)

(
1 +E[∥X0∥pB])dµ1(s

)
+ C

∫ tk

0
K(s)(1 +E[∥X0∥pB])dµ2(s)

}
≤ 2p/qHK̃(tk),

where H ≡
(
1 +E

[
∥X0∥pB

])
, K̃(t) =

∫ t
0 K(s)dµ(s) and µ is given as in

(3.4). Therefore, by induction on k, for 0 ≤ t ≤ T , we have

(3.5) E [Z(t; k + 1)] ≤

(
2p/qK̃(t)

)k+1

(k + 1)!
H,

and so, for i = 1, 2, we obtain that

µi × P
(
Z(·; k + 1) ≥ 2−k

)
≤ 2kE

[∫ T

0
Z(t; k + 1)dµi(t)

]

≤ 2k

(
2p/qK̃(T )

)k+1

(k + 1)!
Hµi([0, T ]).

Therefore, by the Borel-Cantelli lemma, we have

µi × P
(
∥Y (k+1) − Y (k)∥pB ≥ 2−k for infinitely many k

)
= 0.



Stochastic calculus for Banach space valued regular stochastic processes 53

Thus for almost all (t, ω) ∈ [0, T ] × Ω, there exists k0 = k0(t, ω) such
that

∥Y (k+1)(t)− Y (k)(t)∥B ≤ 2−k/p for k ≥ k0.

Therefore, the sequence

(3.6) Y (n)(t, ω) = Y (0)(t, ω) +
n−1∑
k=0

(
Y (k+1)(t, ω)− Y (k)(t, ω)

)
converges for almost all (t, ω) ∈ [0, T ]× Ω. Put

X(t, ω) = lim
n→∞

Y (n)(t, ω), (t, ω) ∈ [0, T ]× Ω.

Then by using (3.5) and (3.6), the proof of (3.3) is straightforward. For
m ≥ n ≥ 0, by (3.5) we obtain that

E
[
∥Y (m)(t)− Y (n)(t)∥pB

]
≤

(
m−1∑
k=n

∥∥∥Y (k+1)(t)− Y (k)(t)
∥∥∥
Lp(Ω;B)

)p

≤

 ∞∑
k=n

H
(
2p/qK̃(t)

)k+1

(k + 1)!




p

→ 0 as n → ∞.

(3.7)

Then {Y (n)(t)} converges in Lp(Ω;B) and the limit is denoted by Y (t).

A subsequence of {Y (n)(t, ω)} converges to Y (t, ω) almost all ω and so
Y (t) = X(t). It remains to show that X(t) satisfies (3.2). For all n, we
have

(3.8) Y (n+1)(t) = X0+

∫ t

0
σ(s, Y (n)(s))dµ1(s)+

∫ t

0
ρ(s, Y (n)(s))dZ(s).

Also, {Y (n+1)(t, ω)} converges toX(t, ω) for almost all (t, ω) ∈ [0, T ]×Ω,
by (3.7) and the Fatou’s lemma, we have

E

[∫ T

0
∥X(t)− Y (n)(t)∥pBdµi(t)

]
≤ lim sup

m→∞
E

[∫ T

0
∥Y (m)(t)− Y (n)(t)∥pBdµi(t)

]
→ 0
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as n → ∞ for i = 1, 2. Since

lim
n→∞

E

[∥∥∥∥∫ t

0
[σ(s, Y (n)(s))− σ(s,X(s))]dµ1(s)

∥∥∥∥p
B

]
≤ lim

n→∞
{µ([0, t])}p/q

∫ t

0
K(s)E

[
∥Y (n)(s)−X(s)∥pB

]
dµ1(s)

= 0,

we have

lim
n→∞

∫ t

0
σ(s, Y (n)(s))dµ1(s) =

∫ t

0
σ(s,X(s))dµ1(s) in Lp(Ω;B).

Also, since

lim
n→∞

E

[∥∥∥∥∫ t

0
[ρ(s, Y (n)(s))− ρ(s,X(s))]dZ(s)

∥∥∥∥p
B

]
≤ lim

n→∞
C

∫ t

0
K(s)E

[
∥Y (n)(s)−X(s)∥pB

]
dµ2(s)

= 0,

we have

lim
n→∞

∫ t

0
ρ(s, Y (n)(s))dZ(s) =

∫ t

0
ρ(s,X(s))dZ(s) in Lp(Ω;B).

Therefore, by taking the limit in the both sides of (3.8), we obtain (3.2)
for X(t).

4. Noncommutative stochastic calculus

Let A be a Banach algebra with norm ∥ · ∥A and {Z(t) | t ≥ 0} a
A-valued p-regular process with respect to a Radon measure µ on R+.

For an elementary process Φ ∈ Ep([0, T ], Z) given as in (2.1) with
Φtm ∈ L(A), the stochastic integral of Φ against with the A-valued
p-regular process Z(t) is defined by

I(Φ) :=

∫ T

0
Φ(s)dZ(s) :=

k−1∑
m=0

Φtm(Ztm+1 − Ztm),

and then we have

E[∥I(Φ)∥pA] ≤ C2

k−1∑
m=0

E[∥Φtm(Ztm+1 − Ztm)∥
p
A].
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Therefore, by the construction in Section 2, the stochastic integral of
a Banach algebra valued process Φ ∈ Ip

pred([0, T ], Z) against with the

Banach algebra valued p-regular process Z is well-defined and denoted

by I(Φ) :=
∫ T
0 Φ(s)dZ(s). Then the following theorem is obvious.

Theorem 4.1. Let Φ be a L(A)-valued process in Ip
pred([0, T ], Z) and

Z a A-valued p-regular process. Then I(Φ) in Lp(Ω;A) and

E[∥I(Φ)∥pA] ≤ C

∫ T

0
E[∥Φ(t)∥pop]dµ(t)

for some C ≥ 0.

For each Φ ∈ Ip
pred([0, T ], Z), the time-ordered exponential is defined

by

Texp

(∫ t

0
Φ(s)dZ(s)

)
(4.1)

≡ 1 +
∞∑
n=1

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
Φ(t1) · · ·Φ(tn)dZ(tn) · · · dZ(t1)

if the series converges.

Proposition 4.2. Let Φ be a L(A)-valued process in I1
pred([0, T ], Z)

satisfying the following property: for any n and 0 ≤ ti ≤ T , i =
1, 2, 3, · · · , n

E

 n−times︷ ︸︸ ︷
∥Φ(·)∥op · · · ∥Φ(·)∥op

 ∈ L1([0, T ]n, µn).

Then the time-ordered exponential converges in L1(Ω;A).

Proof. To proof, we check the time-ordered exponential is absolutely
convergent in L1(Ω;A). By Fubini-Tonelli’s theorem we obtain∥∥∥∥∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
Φ(t1) · · ·Φ(tn)dZ(tn) · · · dZ(t1)

∥∥∥∥
L1(Ω;A)

≤ 1

n!
E

[(
C

∫ t

0
∥Φ(s)∥opdµ(s)

)n]
.
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Thus we have

1 +

∞∑
n=1

∥∥∥∥∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
Φ(t1) · · ·Φ(tn)dZ(tn) · · · dZ(t1)

∥∥∥∥
L1(Ω;A)

≤ E

[
exp

(
C

∫ t

0
∥Φ(s)∥opdµ(s)

)]
< ∞,

which gives the proof.

Let Φ be a A-valued process. Then for each t ≥ 0, Φ(t) : Ω −→ A
can be considered as the L(A)-valued process as the left multiplication
operator, i.e.,

Φ(t)(a) = Φ(t)a, a ∈ A,

and if Φ ∈ Ip
pred([0, T ], Z), then the integral I(Φ) =

∫ T
0 Φ(s)dZ(s) is

well-defined and called a noncommutative stochastic integral of a Banach
algebra valued process Φ against with a Banach algebra valued process
Z.

Corollary 4.3. Let E [∥X0∥A] < ∞ and σ, ρ ∈ A. The unique
solution of the linear stochastic differential equation:

dX(t) = σX(t)dν(t) + ρX(t)dZ(t), X(0) = X0

is given by

X(t) = X0Texp (σν(t) + ρZ(t)) , t ≥ 0,

where ν(t) =
∫ t
0 dν(s).

Proof. The proof is immediate from Theorem 3.1 and Proposition
4.2.
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