DOI QR코드

DOI QR Code

MODULE-THEORETIC CHARACTERIZATIONS OF GENERALIZED GCD DOMAINS, II

  • Kim, Hwankoo (Department of Information Security Hoseo University)
  • Received : 2011.02.11
  • Accepted : 2011.03.04
  • Published : 2011.03.30

Abstract

It is shown that generalized GCD domains satisfy a certain property of injectivity and conversely this property characterizes generalized GCD domains.

Keywords

References

  1. D. D. Anderson, ${\pi}$-domains, divisorial ideals, overrings, Glasgow Math. J. 19 (1978), 199-203. https://doi.org/10.1017/S001708950000361X
  2. D. D. Anderson and D. F. Anderson, Generalized GCD-domains, Comment. Math. Univ. St. Pauli, 23 (1979), 213-221.
  3. R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, vol. 90, Queen's University, Kingston, Ontario, 1992.
  4. J. S. Golan, Characterization of rings using quasiprojective modules. II, Proc. Amer. Math. Soc. 28 (1971), 337-343. https://doi.org/10.1090/S0002-9939-1971-0280551-5
  5. R. N. Gupta, On f-injective modules and semi-hereditary rings, Proc. Nat. Inst. Sci. India Part A, 35 (1969), 323-328.
  6. H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), 1649-1670. https://doi.org/10.1080/00927870701872513
  7. H. Kim, Module-theoretic characterizations of generalized GCD domains, Comm. Algebra 38 (2010), 759-772. https://doi.org/10.1080/00927870902828660
  8. H. Kim, E. S. Kim, and Y. S. Park, Injective modules over strong Mori domains, Houston J. Math. 34 (2008), 349-360.
  9. J. J. Rotman, An Introduction to Homological Algebra, 2nd ed., Springer, New York, 2009.
  10. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), 1285-1306. https://doi.org/10.1080/00927879708825920