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EXISTENCE OF MULTIPLE SOLUTIONS OF A
SEMILINEAR BIHARMONIC PROBLEM WITH

VARIABLE COEFFICIENTS

Tacksun Jung* and Q-Heung Choi**

Abstract. We obtain multiplicity results for the biharmonic prob-
lem with a variable coefficient semilinear term. We show that there
exist at least three solutions for the biharmonic problem with the
variable coefficient semilinear term under some conditions. We ob-
tain this multiplicity result by applying the Leray-Schauder degree
theory.

1. Introduction and statement of main result

Let Ω be a bounded domain in Rn with the smooth boundary ∂Ω.
Let b(x) be Hölder continuous in Ω. Let c ∈ R, u+ = max{u, 0} and
u− = −min{u, 0}. In this paper we consider the multiplicity of the solu-
tions for the following biharmonic equation with the variable coefficient
semilinear term and the Dirichlet boundary condition

∆2u + c∆u = b(x)u+ + sψ1(x) in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω,

where ∆ is the Laplace operator and ψ1 is the positive eigenfunction of
∆ + c∆ − b(x) with Dirichlet boundary condition. Choi and Jung [3]
showed that the problem

∆2u + c∆u = bu+ + s in Ω, (1.2)

u = 0, ∆u = 0 on ∂Ω
has at least two solutions when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c),
s < 0 and when λ1 < c < λ2, b < λ1(λ1−c), s > 0. They obtained these
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results by using the variational reduction method. They [5] also proved
that when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and s < 0, (1.2) has at
least three nontrivial solutions by using degree theory. Tarantello [10]
also studied the jumping problem

∆2u + c∆u = b((u + 1)+ − 1) in Ω, (1.3)

u = 0, ∆u = 0 on ∂Ω.

She show that if c < λ1 and b ≥ λ1(λ1 − c), then (1.3) has at least
two solutions, one of which is a negative solution. She obtained this
result by degree theory. Micheletti and Pistoia [8] also proved that
if c < λ1 and b ≥ λ2(λ2 − c), then (1.3) has at least four solutions
by the variational linking theorem and Leray-Schauder degree theory.
Let λk(k = 1, 2, · · · ) denote the eigenvalues and φk(k = 1, 2, · · · ) the
corresponding eigenfunctions, suitably normalized with respect to L2(Ω)
inner product, of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω,

where each eigenvalue λk is repeated as often as its multiplicity. We
recall that λ1 < λ2 ≤ λ3 . . . → +∞, and that φ1(x) > 0 for x ∈ Ω. The
eigenvalue problem

∆2u + c∆u = µu in Ω,

u = 0, ∆u = 0 on ∂Ω
has also infinitely many eigenvalues µk = λk(λk − c), k ≥ 1 and corre-
sponding eigenfunctions φk, k ≥ 1. We note that

λ1(λ1 − c) < λ2(λ2 − c) ≤ λ3(λ3 − c) < · · · .

The eigenvalue problem

∆2u + c∆u− b(x)u = Λu in Ω, (1.4)

u = 0, ∆u = 0 on ∂Ω
has also infinitely many eigenvalues Λk, k ≥ 1, and ψk, k ≥ 1 the
corresponding eigenfunctions. We assume that the eigenfunctions are
normalized with respect to H inner product (the space H is introduced
in section 2). Standard eigenvalue theory gives that

Λ1 < Λ2 ≤ Λ3 ≤ · · · , Λk → +∞ as k → +∞,

ψ1(x) > 0 in Ω.

Our main results are as follows:
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Theorem 1.1. Let c < λ1 and b(x) < λ1(λ1 − c), n ≥ 1. Then there
exists s0 < 0 such that for any s with 0 > s ≥ s0 (1.1) has at least three
solutions, one of which is a positive solution.

For the proof of the main result we use the Leray-Schauder degree
theory on the Hilbert space H (H will be introduced in section 2). The
outline of the proof is that: In section 2 we investigate a priori estimate
of the solutions of (1.1) and the non solvability condition. In section 3
we prove Theorem 1.1.

2. A priori estimate

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkψk with
∑

h2
k < ∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|Λk|h2
k < ∞}.

Then this is a complete normed space with a norm

‖u‖ = [
∑

|Λk|h2
k]

1
2 .

Since Λk → +∞ and c is fixed, we have
(i) ∆2u + c∆u− b(x)u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0.
Now we investigate the non solvability condition for (1.1):

Lemma 2.1. Assume that λ1 < c < λ2 and b(x) < λ1(λ1 − c). Then
we have:
(i) If s < 0, then (1.1) has no solution.
(ii) If s = 0, then (1.1) has only trivial solution.

Proof. The conditions λ1 < c < λ2 and b(x) < λ1(λ1 − c) imply that
Λ1 > 0 and b(x) + Λ1 ≤ 0. We rewrite (1.1) as

(∆2 + c∆− b(x)− Λ1)u = −Λ1u
+ + (b(x) + Λ1)u− + sψ1(x). (2.1)

Taking the inner product of both sides of (2.1), we have

0 = ((∆2 + c∆− b(x)− Λ1)u, ψ1(x))

= (−Λ1u
+ + (b(x) + Λ1)u− + sψ1(x), ψ1(x)).

(2.2)
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It follows that from (2.2),

0 = ((∆2 + c∆− b(x)− Λ1)u, ψ1(x))

= (−Λ1u
+ + (b(x) + Λ1)u− + sψ1(x), ψ1(x)) ≤ s.

If s < 0, the left hand side of (2.2) is 0 and the right hand side of (2.2) is
negative. Thus (1.1) has no solution. If s = 0, then the only possibility
to hold the above equation is u = 0.

Lemma 2.2. (a priori bound) Assume that Λ1 > ε > 0, b(x) + Λ1 ≤
−ε < 0 and b(x) is bounded in Ω. Then there exist a constant C ′ > 0
and s1 > 0 such that if u is a solution of (1.1) with 0 < s ≤ s1, then
‖u‖ ≤ C ′.

Proof. From (2.2) we have

s = ((Λ1u
+ − (b(x) + Λ1)u−, ψ1(x)).

Since M ≥ |(Λ1u
+ − (b(x) + Λ1)u−| ≥ ε|un| with M = sup{|Λ1|, |b(x) +

Λ1|}, we have

s ≥ ε

∫

Ω
|u|ψ1(x) ≥ ε|

∫

Ω
uψ1(x)|.

Thus if u is a solution of (1.1), we have

|(u, ψ1(x))| ≤ 1
ε
s, (2.6)

where s ≥ 0. We argue by contradiction. Suppose that there exists a
sequence (un, sn) such that sn ≥ 0, sn is bounded, ‖un‖ → ∞ and un

satisfy the equations

(∆2 + c∆− b(x)− Λ1)un = −Λ1u
+
n + (b(x) + Λ1)u−n + snψ1(x).

Let vn = un
‖un‖ . By the compactness of (∆2 + c∆ − b(x) − Λ1)−1, there

exists v such that vn → v. v satisfies ‖v‖ = 1 and

(∆2 + c∆− b(x)− Λ1)v + Λ1v
+ − (b(x) + Λ1)v− = 0. (2.7)

Since, from (1.1), we have

(∆2 + c∆)vn = b(x)v+
n + sn

ψ1(x)
‖un‖ ,

(2.6) with un instead of u and the boundedness of sn implies that

|(vn, ψ1(x))| ≤ 1
ε‖un‖(sn) → 0 as n →∞.
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So we have that |(v, ψ1(x))| = 0. By (2.7), we obtain∫

Ω
(−Λ1v

+ + (b(x) + Λ1)v−)ψ1(x) = 0. (2.8)

Since Λ1v
+ − (b(x) + Λ1)v− ≥ ε|v| and ψ1(x) > 0, the only possibility

to hold (2.8) is that v = 0, which is impossible, since ‖v‖ = 1. Thus we
prove the lemma.

3. Proof of Theorem 1.1

Throughout this section we assume that Λ1 > 0, b(x) + Λ1 < 0 and
b(x) is bounded in Ω.

Lemma 3.1. Assume that λ1 < c < λ2, b(x) < λ1(λ1 − c) and b(x)
is bounded in Ω. Then there exist a constant R′ > 0 (depending on
C ′ which is introduced in Lemma 2.2) and s1 > 0 such that the Leray-
Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), BR′(0), 0) = 0

for R′ > C ′ and s ≤ s1.

Proof. By Lemma 2.2, there exist a constant C and s1 > 0 such that
if u is a solution of (1.1) with s, s ≤ s1, then ‖u‖ ≤ C ′. Let us choose R′
such that R′ > C ′. By Lemma 2.2, (1.1) has no solution when s < 0. Let
us choose s∗ < 0 such that (1.1) has no solution with s∗. Then the Leray-
Schauder degree dLS(u−(∆2 +c∆)−1(b(x)u+ +s∗ψ1(x)), BR′(0), 0) = 0.
Since the Leray-Schauder degree is invariant under a homotopy, we have
that the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), BR′(0), 0)

= dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x) + λ(s∗ − s)ψ1(x)), BR′(0), 0)

= dLS(u− (u− (∆2 + c∆)−1(b(x)u+ + s∗ψ1(x)), BR′(0), 0) = 0,

where 0 ≤ λ ≤ 1 and 0 ≤ s ≤ s1. Thus we prove the lemma.

Lemma 3.2. Assume that λ1 < c < λ2 and b(x) < λ1(λ1 − c). Then
there exist s1 > 0 and a small number η′ > 0 such that for any s with
0 < s ≤ s1 the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bη′(y2), 0) = 1,

where y2 is the unique positive solution of the linear problem

(∆2 + c∆)u = sψ1(x) in Ω, (3.1)
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u = 0, ∆u = 0 on ∂Ω.

Proof. The linear problem (3.1) has a unique solution y2. (3.1) can
be rewritten as

(∆2 + c∆− b(x))u = sψ1(x)− b(x)u, in Ω, (3.2)

u = 0, ∆u = 0 on ∂Ω.

Thus y2 is the unique solution of (3.2). We can also rewrite (1.1) as

(∆2 + c∆− b(x))u = b(x)u+ + sψ1(x)− b(x)u, in Ω, (3.3)

u = 0, ∆u = 0 on ∂Ω.

We claim that y2 is positive. In fact, let u be a solution of (1.1). Since
b(x)u++sψ1(x)−b(x)u ≤ sψ1(x)−b(x)u and the operator ∆2+c∆−b(x)
is positive, u ≤ y2. Since u2 = s

Λ1
ψ1(x) with s > 0 is a positive solution

of (1.1), we get that u2 ≤ y2. Thus y2 is positive. Let K be the closure
of (∆2 + c∆− b(x))−1(B̄), where B̄ is the closed unit ball in L2(Ω). Let
u be a solution of (1.1) which is different from the positive solution u2

of (1.1). Since y2 is positive, we can take η′ < max |u2(x)− y2(x)| such
that the ball Bη′(y2) with center y2 and radius η′ does not contain u2.
Let us write u = y2 + v and ‖v‖ = η′. Then v satisfies the equation

(∆2 + c∆− b(x))v = b(x)(y2 + v)− + b(x)y2 (3.4)

or
v = (∆2 + c∆− b(x))−1(b(x)(y2 + v)− + b(x)y2). (3.5)

Let us set β′ = max b(x). From (3.5) we get

v ∈ 2β′η′K. (3.6)

It follows from (3.4) that

v+(∆2+c∆−b(x))−1(−b(x)y2) = (∆2+c∆−b(x))−1b(x)(y2+v)−. (3.7)

The function w = v
η′ has the properties ‖w‖ = 1 and w ∈ 2β′K. Since w

is in compact set and different from zero and since b(x) is not eigenvalue
and b(x) < 0, infw‖w+ 1

η′ (∆
2 +c∆−b(x))−1(−b(x)y2))‖ = a′ > 0. Thus

we get the estimate of the norm of the left hand side

‖v + (∆2 + c∆− b(x))−1(−b(x)y2)‖ ≥ a′η′.

By Lemma 1 of [7], there exists a modulus of continuity δ(t) with δ(t) →
0 as t → 0 such that v ∈ K and y2 > 0 satisfies ‖(tv + y2)−‖ ≤ tδ(t). It
follows from (3.6) that

‖(v + y2)−‖ ≤ 2β′η′δ(2β′η′).
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On the other hand, we get the estimate of the norm of the right hand
side of (3.7)

(∆2 + c∆− b(x))−1b(x)(y2 + v)−

≤ β′

Λ1
(∆2 + c∆− b(x))−1δ((∆2 + c∆− b(x))−1).

We can choose η′ > 0 so small that the right hand side is < a′η′ and
Bη′(y2)∩{u2} = ∅. Thus for this value of η′, there is no solution of (1.1)
of the form u = y2 + v with ‖v‖ = η′. That is,

u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)) 6= 0 on ∂Bη′(y2).

We apply the similar argument to the equation

(∆2 + c∆− b(x))u = λb(x)u− + (λ− 1)b(x)y2 + sψ1(x),
0 ≤ λ ≤ 1, in H,

(3.8)

where u is of the form u = y2 + v. Let u be a solution of the form
u = y2 + v with ‖v‖ = η′. When λ = 1, (4.7) is equal to (1.1), while for
any λ the function v satisfies the equation

v = (∆2 + c∆− b(x))−1(λb(x)(y2 + v)− + λb(x)y2). (3.9)

From (4.8) we obtain
v ∈ 2β′λη′K.

It follows from (3.9) that

v + (∆2 + c∆− b(x))−1λ(−b(x)y2)

= (∆2 + c∆− b(x))−1λb(x)(y2 + v)−.
(3.10)

If w is the function w = v
η′ , then infw‖w+ 1

η′ (∆
2+c∆−b(x))−1λ(−b(x)y2))‖

= b′ > 0. Thus we get the estimate of the norm of the left hand side of
(3.10)

‖v + (∆2 + c∆− b(x))−1λ(−b(x)y2)‖ ≥ b′η′.

By a modulus of continuity δ(t), we get the estimate of the norm of the
right hand side of (3.10)

‖(∆2 + c∆− b(x))−1λb(x)(y2 + v)−‖ ≤ β′

Λ1
2β′λη′δ(2β′λη′)

≤ β′

Λ1
2β′λη′δ(2β′λη′).
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We can choose η′ so small that the right hand side of (3.10) is < bη′ and
Bη′(y2)∩{u2} = ∅. Thus for this value of η′ there is no solution of (1.1)
of the form u = y2 + v with ‖v‖ = η′. That is,

u− (∆2 + c∆− b(x))−1(λb(x)u− + (λ− 1)b(x)y2 + sψ1(x))

6= 0 on ∂Bη′(y2).

Since the Leray-Schauder degree is invariant under a homotopy, we have

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bη′(y2), 0)

= dLS(u− (∆2 + c∆− b(x))−1(λb(x)u−

+ (λ− 1)b(x)y2 + sψ1(x)), Bη′(y2), 0)

= dLS(u− (∆2 + c∆− b(x))−1(−b(x)y2 + sψ1(x)), Bη′(y2), 0)

= dLS(u− (∆2 + c∆)−1(b(x)u), Bη′(0), 0)

The equation
u− (∆2 + c∆)−1(b(x)u) = σu (3.11)

is equivalent to

(∆2 + c∆)u = rb(x)u, where r =
1

1− σ
. (3.12)

We note that σ < 0 corresponds to 0 < r < 1. we consider the eigenvalue
problem

(∆2 + c∆)u = rλ1(λ1 − c)
b(x)

λ1(λ1 − c)
u.

Since b(x)
λ1(λ1−c) > 1, rk(λ1(λ1 − c)) < λk(λk − c), from which it follows

that

rk >
λk(λk − c)
λ1(λ1 − c)

.

Thus r1 > 1 and rk < 0, k ≥ 2, which means that σk = rk−1
rk

> 0, k ≥ 1.
Thus

u− (∆2 + c∆)−1(b(x)u) = σu

has only positive eigenvalues, which implies that

dLS(u− (∆2 + c∆)−1(b(x)u), N1, 0) = +1.

Thus we prove the lemma.

Lemma 3.3. Assume that λ1 < c < λ2 and b(x) < λ1(λ1 − c). Then
there exist s1 > 0 and a small number ν > 0 such that for any s with
0 < s ≤ s1 the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bν(u2), 0) = 1,
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where u2 = s
Λ1

ψ1(x) is a positive solution of (1.1).

Proof. The function u1 = s
Λ1

ψ1(x) is a positive solution. Since the
solutions of (1.1) is discrete, we can choose a small number τ > 0 such
that Bτ (u1) does not contain the other solutions of (1.1) except u1. Let
u ∈ Bτ (u1). Then u can be written as u = u1 + w, ‖w‖ < τ . Then the
Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bτ (u1), 0)

= dLS(u− u1, Bτ (u1), 0)

= dLS(u,Bτ (0), 0) = 1
because (∆2 + c∆)u = b(x)u+ + sψ1(x) has only one solution u = u1 in
Bτ (u1).

PROOF OF THEOREM 1.1
By Lemma 3.1, there exists a large number R′ > 0 (depending on C ′)
and s1 > 0 such that the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), BR′(0), 0) = 0

for R′ > C ′ and s ≤ s1. By Lemma 3.2, there exist s1 > 0 and a small
number η′ > 0 such that for any s with 0 < s ≤ s1, the Leray-Schauder
degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bη′(y2), 0) = +1,

where y2 is a unique positive solution of (3.2). By Lemma 3.3, there
exist s1 > 0 and a small number ν such that for any s with 0 < s ≤ s1

the Leray-Schauder degree

dLS(u− (∆2 + c∆)−1(b(x)u+ + sψ1(x)), Bν(u2), 0) = 1,

where u2 is the positive solution of (1.1). Thus the Leray-Schauder
degree in the region BR′(0)\{Bη′(y2)∪Bν(u2)} is -2, so there exists the
third solution in the region BR′(0)\{Bη′(y2)∪Bν(u2)}. Therefore there
exists at least three solutions of (1.1), one of which is a positive solution.
Thus we complete the proof.
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Birkhäuser, 1993.

[2] Q. H. Choi and T. Jung, Multiplicity of solutions and source terms in a fourth
order nonlinear elliptic equation, Acta Mathematica Scientia, 19 (1999), no. 4,
361-374.

[3] Q. H. Choi and T. Jung, Multiplicity results on nonlinear biharmonic operator,
Rocky Mountain J. Math. 29 (1999), no. 1, 141-164.

[4] Q. H. Choi and T. Jung, An application of a variational reduction method to a
nonlinear wave equation, J. Differential Equations 7 (1995), 390-410.

[5] T. Jung and Q. H. Choi, Multiplicity results on a nonlinear biharmonic equa-
tion, Nonlinear Analysis, Theory, Methods and Applications, 30 (1997), no. 8,
5083-5092.

[6] A. C. Lazer and P. J. McKenna, Multiplicity results for a class of semilinear el-
liptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985),
371-395.

[7] P. J. McKenna and W. Walter, On the multiplicity of the solution set of some
nonlinear boundary value problems, Nonlinear Analysis, Theory, Methods and
Applications, 8 (1984), 893-907.

[8] A. M. Micheletti and A. Pistoia, Multiplicity results for a fourth-order semi-
linear elliptic problem, Nonlinear Analysis, TMA, 31 (1998), no. 7, 895-908.

[9] P. H. Rabinowitz, Minimax methods in critical point theory with applications
to differential equations, CBMS. Regional conf. Ser. Math. 65, Amer. Math.
Soc., Providence, Rhode Island (1986).

[10] G. Tarantello, A note on a semilinear elliptic problem, Diff. Integ. Equat. 5
(1992), no. 3, 561-565.

*
Department of Mathematics
Kunsan National University
Kunsan 573-701, Republic of Korea
E-mail : tsjung@kunsan.ac.kr

**
Department of Mathematics Education
Inha University
Incheon 402-751, Republic of Korea
E-mail : qheung@inha.ac.kr


