Radiation Doses of Dual-Energy CT for Abdominopelvic CT: Comparison with Single-Energy CT

복부-골반의 이중 에너지 CT에서의 방사선량: 단일 에너지 CT와의 비교

  • Cho, Young-Seo (Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine) ;
  • Jeong, Woo-Kyoung (Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine) ;
  • Kim, Yong-Soo (Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine) ;
  • Heo, Jeong-Nam (Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine)
  • 조영서 (한양대학교 의과대학 구리병원 영상의학과학교실) ;
  • 정우경 (한양대학교 의과대학 구리병원 영상의학과학교실) ;
  • 김용수 (한양대학교 의과대학 구리병원 영상의학과학교실) ;
  • 허정남 (한양대학교 의과대학 구리병원 영상의학과학교실)
  • Published : 2011.11.01

Abstract

Purpose: To compare radiation doses of dual-energy CT (DECT) to single-energy CT (SECT) by a phantom experiment, with the application of mean tube currents for abdomino-pelvic CT. Materials and Methods: This study includes patients who were examined by contrast-enhanced CT for kidney evaluation. We divided the patients into six groups according to sex and body mass index. Each group consisted of five patients and a total of 30 patients were evaluated. We split the body parts (abdomen and pelvis), and calculated the mean tube current of each group as well as investigated the image noise. Applying the mean mAs from a CT scan, we measured the weighted CT dose index (CTDIw) of DECT and SECT. We compared the measured CTDIw to an estimated CTDI value displayed on the CT console. We also compared the radiation dose ratio of DECT to SECT (D/S ratio) for each subgroup. The radiation doses were compared by the student's t-test and analysis of variance. Results: The difference of image noise between DECT and SECT was not statistically significant. Radiation dose of DECT was higher than SECT by about 21.6% (10.69 mGy, 8.79 mGy; p < 0.0001), and the measured CTDI of the DECT was significantly higher than the estimated CTDI by about 6% (p < 0.001). The D/S ratio was not significant between the six groups. Conclusion: The measured CTDIw of abdominopelvic DECT studies were significantly higher than those of SECT.

목적: 성별과 체형에 따른 복부-골반 CT의 평균 관전류를 구한 후, 이를 적용한 팬텀 실험에서 단일 및 이중 에너지 CT의 가중 CT 선량지수를 비교하고자 하였다. 대상과 방법: 신장 검사를 위한 역동적 복부-골반 CT를 받은 환자 중 성별과 체질량 지수에 따라 5명씩 여섯 그룹 30명의 CT를 대상으로 하였다. 복부와 골반으로 나누어 평균 관전류의 그룹별 평균을 구하였고, 각각 CT 영상의 영상잡음을 구하였다. CT 선량지수 팬텀과 이온 챔버를 사용하여 각 평균 관전류를 적용한 단일, 이중 에너지 CT 스캔의 가중 CT 선량지수를 구한 후 비교하고, CT 스캐너 자체의 계산으로 얻어진 추정 CT 선량지수를 조사하여 각각 비교하였다. 또한 이중 에너지와 단일 에너지 CT의 방사선량의 비(D/S비)가 그룹 간 차이가 있는지 알아보았다. 통계적 방법으로 student t-test와 analysis of variance를 이용하였다. 결과: 이중 에너지와 단일 에너지 CT 간의 영상잡음은 유의한 차이를 보이지 않았다(p = 0.110). 이중 에너지 CT의 방사선 선량은 단일 에너지에 비해 약 21.6%가량 높았고(10.69 mGy, 8.79 mGy; p < 0.01), 이중 에너지 CT에서 측정된 CT 선량지수가 추정 CT 선량지수보다 약 6%가량 높았다(p < 0.01). 또한 D/S비는 성별, 체질량 지수, 신체 부분에 따라 뚜렷한 차이를 보이지 않았다. 결론: 복부-골반검사를 위한 이중 에너지 CT는 단일 에너지 CT에 비해 가중 CT 선량지수가 높다.

Keywords

References

  1. Flohr TG, Bruder H, Stierstorfer K, Petersilka M, Schmidt B, McCollough CH. Image reconstruction and image quality evaluation for a dual source CT scanner. Med Phys 2008; 35:5882-5897 https://doi.org/10.1118/1.3020756
  2. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol 2008; 68:362-368 https://doi.org/10.1016/j.ejrad.2008.08.013
  3. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17:1510-1517 https://doi.org/10.1007/s00330-006-0517-6
  4. Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD, et al. Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 2008;248:615-624 https://doi.org/10.1148/radiol.2482071482
  5. Goo HW, Chae EJ, Seo JB, Hong SJ. Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol 2008;38:1113-1116 https://doi.org/10.1007/s00247-008-0914-x
  6. Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 2005;237:945-951 https://doi.org/10.1148/radiol.2373041655
  7. Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C. Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 2004;233:515-522 https://doi.org/10.1148/radiol.2332032107
  8. Graser A, Johnson TR, Bader M, Staehler M, Haseke N, Nikolaou K, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 2008;43:112-119 https://doi.org/10.1097/RLI.0b013e318157a144
  9. Graser A, Johnson TR, Hecht EM, Becker CR, Leidecker C, Staehler M, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 2009;252: 433-440 https://doi.org/10.1148/radiol.2522080557
  10. Ho LM, Yoshizumi TT, Hurwitz LM, Nelson RC, Marin D, Toncheva G, et al. Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol 2009;16:1400-1407 https://doi.org/10.1016/j.acra.2009.05.002
  11. McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics 2002;22:1541-1553 https://doi.org/10.1148/rg.226025128
  12. Shope TB, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission x-ray computed tomography. Med Phys 1981;8:488-495 https://doi.org/10.1118/1.594995
  13. Bauhs JA, Vrieze TJ, Primak AN, Bruesewitz MR, McCollough CH. CT dosimetry: comparison of measurement techniques and devices. Radiographics 2008;28:245-253 https://doi.org/10.1148/rg.281075024
  14. Perisinakis K, Damilakis J, Tzedakis A, Papadakis A, Theocharopoulos N, Gourtsoyiannis N. Determination of the weighted CT dose index in modern multi-detector CT scanners. Phys Med Biol 2007;52:6485-6495 https://doi.org/10.1088/0031-9155/52/21/010
  15. Goo HW. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 2011; 41:839-847 https://doi.org/10.1007/s00247-011-2121-4
  16. Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U, Nikolaou K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol 2010;45:347-353
  17. Bauer RW, Kramer S, Renker M, Schell B, Larson MC, Beeres M, et al. Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol 2011;21:2139-2147 https://doi.org/10.1007/s00330-011-2162-y
  18. Miyazaki O, Horiuchi T, Masaki H, Nosaka S, Miyasaka M, Tsutsumi Y, et al. Estimation of adaptive computed tomography dose index based on body weight in pediatric patients. Radiat Med 2008;26:98-103 https://doi.org/10.1007/s11604-007-0199-2
  19. Nickoloff EL, Dutta AK, Lu ZF. Influence of phantom diameter, kVp and scan mode upon computed tomography dose index. Med Phys 2003;30:395-402 https://doi.org/10.1118/1.1543149