심방세동환자의 좌심방 및 폐정맥에 대한 다검출기 CT 소견: 비심방세동환자와의 비교

MDCT Evaluation of Left Atrium and Pulmonary Vein in the Patients with Atrial Fibrillation: Comparison with the Non-Atrial Fibrillation Group

  • 김원중 (고대의료원 안암병원 영상의학과) ;
  • 최은정 (고대의료원 안암병원 영상의학과) ;
  • 용환석 (고대의료원 구로병원 영상의학과) ;
  • 양경숙 (고려대학교 생물통계학교실) ;
  • 함수연 (고대의료원 안암병원 영상의학과) ;
  • 오유환 (고대의료원 안암병원 영상의학과) ;
  • 김영훈 (고대의료원 안암병원 심장내과)
  • Kim, Won-Jung (Department of Radiology, Korea University Medical Center) ;
  • Choi, Eun-Jeong (Department of Radiology, Korea University Medical Center) ;
  • Yong, Hwan-Seok (Department of Radiology, Korea University Guro Hospital) ;
  • Yang, Kyung-Sook (Department of Biostatistics, Korea University) ;
  • Ham, Soo-Yeon (Department of Radiology, Korea University Medical Center) ;
  • Oh, Yu-Whan (Department of Radiology, Korea University Medical Center) ;
  • Kim, Young-Hoon (Department of Cardiology, Korea University Medical Center)
  • 발행 : 2011.02.01

초록

목적: 좌심방과 폐정맥의 해부학적 구조는 심방세동 환자에서 전기생리학적 절제술을 시행하는데 중요하다. 저자들은 MDCT를 이용하여 심방세동 환자의 좌심방 및 폐정맥의 소견을 평가하고 이를 심방세동이 없는 관상동맥질환 의심자의 좌심방 및 폐정맥 CT 소견과 비교하고자 하였다. 대상과 방법: 2009년 9월부터 2010년 2월까지 91명의 심방세동 환자가 전기생리학적 절제술을 시행하기 전에 폐정맥 CT를 시행하였고(남: 여 = 72:19, 평균연령 55세), 같은 시기에 심방세동이 없는 관상동맥질환 의심자 90명에서 시행한 관상동맥 CT를 비교하였다(남: 여 = 73:17, 평균연령 59.1세). 각 CT의 3차원 영상을 두 명의 영상의학과 의사가 후향적으로 비교 분석하였다. 결과: 다음의 해부학적 구조들에서 통계적으로 유의한 차이가 나타났다. 심방세동 환자군의 평균 좌심방 용적(100.49 $mm^3$)이 비교군(78.38 $mm^3$)보다 크며 (p < 0.05), 환자군의 좌심방의(환자군의 좌심방) 평균 우측 벽 길이(40.25 mm)가 비교군(37.3 mm)보다 길었다(p < 0.05). 또한, 좌상폐정맥과 우상폐정맥에서 폐정맥구와 첫 번째 분지 사이의 평균 거리가 환자군(좌상폐정맥, 19.38 mm; 우상폐정맥, 11.49 mm)에서 비교군(좌상폐정맥, 23.23 mm; 우상폐정맥, 14.25 mm)에서 보다 짧았다(p < 0.05). 결론: 심방세동 환자에서 MDCT를 이용하여 좌심방과 폐정맥의 다양한 측정치를 구할 수 있었으며 심방세동이 없는 관상동맥질환 의심자와 비교할 때 유의한 차이를 발견할 수 있었다.

Purpose: The anatomy of the left atrium (LA) and the pulmonary veins (PVs) is important in planning and performing successful electrophysiologic ablation (EPA) for atrial fibrillation (Afib) patients. The authors estimated the findings of LA and PVs of Afib patients by MDCT, and compared these with the findings of LA and PVs of the non- Afib group using coronary CT angiography (CCTA). Materials and Methods: From September, 2009 to February, 2010, 91 Afib patients underwent PVCT (male: female = 72:19, mean age = 55.0-years-old) before EPA. At same time, 90 patients underwent CCTA (male: female = 73:17, mean age = 59.1- years-old). Two radiologists reviewed and analyzed all axial and 3D images of LA and PVs retrospectively with consensus. Results: The average LA volumes of the Afib group(100.49 $mm^3$) was larger than that of the non-Afib group (78.38 $mm^3$) (p<0.05). The average lengths of the LA right wall in the Afib group (40.25 mm) was longer than that of the non-Afib group (37.3 mm) (p<0.05). The average distances between the PV ostium and first segmental bifurcation of the Lt superior PV (LSPV) and the RSPV were shorter in the Afib group (LSPV, 19.38 mm; RSPV, 11.49 mm) than in the non-Afib group (LSPV, 23.23 mm; RSPV, 14.25 mm) (p<0.05). There were higher incidences of anomalous branches such as ostial, accessory branches, or common ostia in the Afib group versus the non-Afib group (p<0.05). Conclusion: In Afib group, variable parameters of LA and PVs were obtained and estimated by MDCT, and there was statistically significant difference in the parameters of LA and PVs between Afib and non-Afib groups.

키워드

참고문헌

  1. Stanford W, Breen JF. CT evaluation of left atrial pulmonary venous anatomy. Int J Cardiovasc Imaging 2005;21:133-139 https://doi.org/10.1007/s10554-004-5347-5
  2. Lacomis JM, Wigginton W, Fuhrman C, Schwartzman D, Armfield DR, Pealer KM. Multi-detector row CT of the left atrium and pulmonary veins before radio-frequency catheter ablation for atrial fibrillation. Radiographics 2003;23 Spec No:S35-S48 https://doi.org/10.1148/rg.23si035508
  3. Tsao HM, Wu MH, Huang BH, Lee SH, Lee KT, Tai CT, et al. Morphologic remodeling of pulmonary veins and left atrium after catheter ablation of atrial fibrillation. J Ccardiovasc Electrophysiol 2005;16:7-12 https://doi.org/10.1046/j.1540-8167.2005.04407.x
  4. Lacomis JM, Goitein O, Deible C, Schwartzman D. CT of the pulmonary veins. J Thorac Imaging 2007;22:63-76 https://doi.org/10.1097/RTI.0b013e3180317aaf
  5. Piorkowski C, Hindricks G, Schreiber D, Tanner H, Weise W, Koch A, et al. Electroanatomic reconstruction of the left atrium, pulmonary veins, and esophagus compared with the "true anatomy" on multislice computed tomography in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm 2006;3:317-327 https://doi.org/10.1016/j.hrthm.2005.11.027
  6. Centonze M, Del Greco M, Nollo G, Ravelli F, Marini M, Della Sala SW, et al. The role of multidetector CT in the evaluation of the left atrium and pulmonary veins anatomy before and after radio-frequency catheter ablation for atrial fibrillation. Preliminary results and work in progress. Technical note. Radiol Med 2005;110:52-60
  7. Jongbloed MR, Dirksen MS, Bax JJ, Boersma E, Geleijns K, Lamb HJ, et al. Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation--initial experience. Radiology 2005;234:702-709 https://doi.org/10.1148/radiol.2343031047
  8. Dittrich HC, Pearce LA, Asinger RW, Mcbride R, Webel R, Zabalgoitia M, et al. Left atrial diameter in nonvalvular atrial fibrillation: an echocardiographic study. Am Heart J 1999;137:494-499 https://doi.org/10.1016/S0002-8703(99)70498-9
  9. Sanfilippo AJ, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA, et al. Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 1990;82:792-797 https://doi.org/10.1161/01.CIR.82.3.792
  10. Li YH, Lai LP, Shyu KG, Hwang JJ, Kuan P, Lien WP. Clinical implications of left atrial appendage flow patterns in nonrheumatic atrial fibrillation. Chest 1994;105:748-752 https://doi.org/10.1378/chest.105.3.748
  11. Verhorst PM, Kamp O, Visser CA, Verheugt FW. Left atrial appendage flow velocity assessment using transesophageal echocardiography in nonrheumatic atrial fibrillation and systemic embolism. Am J Cardiol 1993;71:192-196 https://doi.org/10.1016/0002-9149(93)90737-W
  12. Wongcharoen W, Tsao HM, Wu MH, Tai CT, Chang SL, Lin YJ, et al. Morphologic characteristics of the left atrial appendage, roof, and septum: implications for the ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2006;17:951-956 https://doi.org/10.1111/j.1540-8167.2006.00549.x
  13. Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 2003;107:2004-2010 https://doi.org/10.1161/01.CIR.0000061951.81767.4E
  14. Lin WS, Prakash VS, Tai CT, Hsieh MH, Tsai CF, Yu WC, et al. Pulmonary vein morphology in patients with paroxysmal atrial fibrillation initiated by ectopic beats originating from the pulmonary veins: implications for catheter ablation. Circulation 2000;101:1274-1281 https://doi.org/10.1161/01.CIR.101.11.1274
  15. Tsao HM, Yu WC, Cheng HC, Wu MH, Tai CT, Lin WS, et al. Pulmonary vein dilation in patients with atrial fibrillation: detection by magnetic resonance imaging. J Cardiovasc Electrophysiol 2003;12:809-813
  16. Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 1999;10:1525-1533 https://doi.org/10.1111/j.1540-8167.1999.tb00211.x
  17. Chiang SJ, Tsao HM, Wu MH, Tai CT, Chang SL, Wongcharoen W, et al. Anatomic characteristics of the left atrial isthmus in patients with atrial fibrillation: lessons from computed tomographic images. J Cardiovasc Electrophysiol 2006;17:1274-1278 https://doi.org/10.1111/j.1540-8167.2006.00645.x