DOI QR코드

DOI QR Code

Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

  • Baek, Jung-Hwan (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee, Jeong-Hyun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Valcavi, Roberto (Endocrinology Division & Thyroid Disease Center) ;
  • Pacella, Claudio M. (Diagnostic Imaging and Interventional Radiology Department) ;
  • Rhim, Hyun-Chul (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Na, Dong-Gyu (Department of Radiology, Human Medical Imaging and Intervention Center)
  • Published : 2011.10.01

Abstract

Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation.

Keywords

References

  1. Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med 1993;328:553-559 https://doi.org/10.1056/NEJM199302253280807
  2. Jeong WK, Baek JH, Rhim H, Kim YS, Kwak MS, Jeong HJ, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol 2008;18:1244-1250 https://doi.org/10.1007/s00330-008-0880-6
  3. Papini E, Guglielmi R, Bizzarri G, Pacella CM. Ultrasoundguided laser thermal ablation for treatment of benign thyroid nodules. Endocr Pract 2004;10:276-283 https://doi.org/10.4158/EP.10.3.276
  4. Shemen LJ, Strong EW. Complications after total thyroidectomy. Otolaryngol Head Neck Surg 1989;101:472-475
  5. Papini E, Guglielmi R, Bizzarri G, Graziano F, Bianchini A, Brufani C, et al. Treatment of benign cold thyroid nodules: a randomized clinical trial of percutaneous laser ablation versus levothyroxine therapy or follow-up. Thyroid 2007;17:229-235 https://doi.org/10.1089/thy.2006.0204
  6. Dossing H, Bennedbaek FN, Karstrup S, Hegedus L. Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation--initial experience. Radiology 2002;225:53-57 https://doi.org/10.1148/radiol.2251011042
  7. Pacella CM, Bizzarri G, Spiezia S, Bianchini A, Guglielmi R, Crescenzi A, et al. Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology 2004;232:272-280 https://doi.org/10.1148/radiol.2321021368
  8. Papini E, Pacella CM, Verde G. Percutaneous ethanol injection (PEI): what is its role in the treatment of benign thyroid nodules? Thyroid 1995;5:147-150 https://doi.org/10.1089/thy.1995.5.147
  9. Spiezia S, Vitale G, Di Somma C, Pio Assanti A, Ciccarelli A, Lombardi G, et al. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter. Thyroid 2003;13:941-947 https://doi.org/10.1089/105072503322511346
  10. Valcavi R, Frasoldati A. Ultrasound-guided percutaneous ethanol injection therapy in thyroid cystic nodules. Endocr Pract 2004;10:269-275 https://doi.org/10.4158/EP.10.3.269
  11. Sung JY, Baek JH, Kim YS, Jeong HJ, Kwak MS, Lee D, et al. One-step ethanol ablation of viscous cystic thyroid nodules. AJR Am J Roentgenol 2008;191:1730-1733 https://doi.org/10.2214/AJR.08.1113
  12. Yasuda K, Ozaki O, Sugino K, Yamashita T, Toshima K, Ito K, et al. Treatment of cystic lesions of the thyroid by ethanol instillation. World J Surg 1992;16:958-961 https://doi.org/10.1007/BF02067001
  13. Zingrillo M, Torlontano M, Chiarella R, Ghiggi MR, Nirchio V, Bisceglia M, et al. Percutaneous ethanol injection may be a definitive treatment for symptomatic thyroid cystic nodules not treatable by surgery: five-year follow-up study. Thyroid 1999;9:763-767 https://doi.org/10.1089/thy.1999.9.763
  14. Kim JH, Lee HK, Lee JH, Ahn IM, Choi CG. Efficacy of sonographically guided percutaneous ethanol injection for treatment of thyroid cysts versus solid thyroid nodules. AJR Am J Roentgenol 2003;180:1723-1726 https://doi.org/10.2214/ajr.180.6.1801723
  15. Lee JH, Kim YS, Lee D, Choi H, Yoo H, Baek JH. Radiofrequency ablation (RFA) of benign thyroid nodules in patients with incompletely resolved clinical problems after ethanol ablation (EA). World J Surg 2010;34:1488-1493 https://doi.org/10.1007/s00268-010-0565-6
  16. Dupuy DE, Goldberg SN. Image-guided radiofrequency tumor ablation: challenges and opportunities--part II. J Vasc Interv Radiol 2001;12:1135-1148 https://doi.org/10.1016/S1051-0443(07)61670-4
  17. Goldberg SN. Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound 2001;13:129-147 https://doi.org/10.1016/S0929-8266(01)00126-4
  18. Kang TW, Rhim H, Kim EY, Kim YS, Choi D, Lee WJ, et al. Percutaneous radiofrequency ablation for the hepatocellular carcinoma abutting the diaphragm: assessment of safety and therapeutic efficacy. Korean J Radiol 2009;10:34-42 https://doi.org/10.3348/kjr.2009.10.1.34
  19. Lencioni R, Cioni D, Bartolozzi C. Percutaneous radiofrequency thermal ablation of liver malignancies: techniques, indications, imaging findings, and clinical results. Abdom Imaging 2001;26:345-360 https://doi.org/10.1007/s002610000194
  20. Park SH, Yoon SK, Cho JH, Oh JY, Nam KJ, Kwon HJ, et al. Radiofrequency ablation treatment for renal cell carcinoma: early clinical experience. Korean J Radiol 2008;9:340-347 https://doi.org/10.3348/kjr.2008.9.4.340
  21. Rhim H, Goldberg SN, Dodd GD 3rd, Solbiati L, Lim HK, Tonolini M, et al. Essential techniques for successful radiofrequency thermal ablation of malignant hepatic tumors. Radiographics 2001;21 Spec No:S17-35; discussion S36-19
  22. Kanauchi H, Mimura Y, Kaminishi M. Percutaneous radiofrequency ablation of the thyroid guided by ultrasonography. Eur J Surg 2001;167:305-307 https://doi.org/10.1080/110241501300091561
  23. Baek JH, Jeong HJ, Kim YS, Kwak MS, Lee D. Radiofrequency Ablation for an Autonomously Functioning Thyroid Nodule. Thyroid 2008;18:675-676 https://doi.org/10.1089/thy.2007.0274
  24. Baek JH, Kim YS, Lee D, Huh JY, Lee JH. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. AJR Am J Roentgenol 2010;194:1137-1142 https://doi.org/10.2214/AJR.09.3372
  25. Baek JH, Moon WJ, Kim YS, Lee JH, Lee D. Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J Surg 2009;33:1971-1977 https://doi.org/10.1007/s00268-009-0130-3
  26. Deandrea M, Limone P, Basso E, Mormile A, Ragazzoni F, Gamarra E, et al. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med Biol 2008;34:784-791 https://doi.org/10.1016/j.ultrasmedbio.2007.10.018
  27. Spiezia S, Garberoglio R, Di Somma C, Deandrea M, Basso E, Limone PP, et al. Efficacy and safety of radiofrequency thermal ablation in the treatment of thyroid nodules with pressure symptoms in elderly patients. J Am Geriatr Soc 2007;55:1478-1479 https://doi.org/10.1111/j.1532-5415.2007.01306.x
  28. Spiezia S, Garberoglio R, Milone F, Ramundo V, Caiazzo C, Assanti AP, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid 2009;19:219-225 https://doi.org/10.1089/thy.2008.0202
  29. Kim YS, Rhim H, Tae K, Park DW, Kim ST. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience. Thyroid 2006;16:361-367 https://doi.org/10.1089/thy.2006.16.361
  30. Dupuy DE, Monchik JM, Decrea C, Pisharodi L. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery 2001;130:971-977 https://doi.org/10.1067/msy.2001.118708
  31. Monchik JM, Donatini G, Iannuccilli J, Dupuy DE. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg 2006;244:296-304 https://doi.org/10.1097/01.sla.0000217685.85467.2d
  32. Haemmerich D, Laeseke PF. Thermal tumour ablation: devices, clinical applications and future directions. Int J Hyperthermia 2005;21:755-760 https://doi.org/10.1080/02656730500226423
  33. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 2000;174:323-331 https://doi.org/10.2214/ajr.174.2.1740323
  34. Baek JH, Na DG, Lee JH, Jung SL, Sung JY, Sim J, et al. Korean Society of Thyroid Radiology recommendations for radiofrequency ablation of thyroid nodules. 2009 http://thyroidimaging.kr
  35. Moon WJ, Baek JH, Jung SL, Kim DW, Kim EK, Kim JY, et al. Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations. Korean J Radiol 2011;12:1-14 https://doi.org/10.3348/kjr.2011.12.1.1
  36. Moon WJ, Jung SL, Lee JH, Na DG, Baek J-H, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation-- multicenter retrospective study. Radiology 2008;247:762-770 https://doi.org/10.1148/radiol.2473070944
  37. Rhim H, Yoon KH, Lee JM, Cho Y, Cho JS, Kim SH, et al. Major complications after radio-frequency thermal ablation of hepatic tumors: spectrum of imaging findings. Radiographics 2003;23:123-134; discussion 134-126 https://doi.org/10.1148/rg.231025054
  38. Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN. Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 2003;226:441-451 https://doi.org/10.1148/radiol.2262012198
  39. Baek JH, Kim YS, Sung JY, Choi H, Lee JH. Locoregional control of metastatic well differentiated thyroid cancer in the neck by ultrasonography-guided radiofrequency ablation. AJR Am J Roentgenol 2011;197:W331-W336 https://doi.org/10.2214/AJR.10.5345
  40. Dachman AH, McGehee JA, Beam TE, Burris JA, Powell DA. USguided percutaneous laser ablation of liver tissue in a chronic pig model. Radiology 1990;176:129-133
  41. Nikfarjam M, Muralidharan V, Malcontenti-Wilson C, Christophi C. Progressive microvascular injury in liver and colorectal liver metastases following laser induced focal hyperthermia therapy. Lasers Surg Med 2005;37:64-73 https://doi.org/10.1002/lsm.20194
  42. Nolsoe CP, Torp-Pedersen S, Burcharth F, Horn T, Pedersen S, Christensen NE, et al. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology 1993;187:333-337
  43. Pacella CM, Rossi Z, Bizzarri G. Ultrasound-guided percutaneous laser ablation of liver tissue in a rabbit model. Eur Radiol 1993;3:26-32
  44. Ritz JP, Lehmann KS, Zurbuchen U, Knappe V, Schumann T, Buhr HJ, et al. Ex vivo and in vivo evaluation of laser-induced thermotherapy for nodular thyroid disease. Lasers Surg Med 2009;41:479-486 https://doi.org/10.1002/lsm.20805
  45. Tranberg KG. Percutaneous ablation of liver tumours. Best Pract Res Clin Gastroenterol 2004;18:125-145 https://doi.org/10.1016/j.bpg.2003.08.001
  46. Pacella CM, Bizzarri G, Francica G, Bianchini A, De Nuntis S, Pacella S, et al. Percutaneous laser ablation in the treatment of hepatocellular carcinoma with small tumors: analysis of factors affecting the achievement of tumor necrosis. J Vasc Interv Radiol 2005;16:1447-1457 https://doi.org/10.1097/01.RVI.90000172121.82299.38
  47. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and EuropeanThyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocr Pract 2010;16 Suppl 1:1-43
  48. Pacella CM, Bizzarri G, Guglielmi R, Anelli V, Bianchini A, Crescenzi A, et al. Thyroid tissue: US-guided percutaneous interstitial laser ablation-a feasibility study. Radiology 2000;217:673-677
  49. Dossing H, Bennedbaek FN, Hegedus L. Beneficial effect of combined aspiration and interstitial laser therapy in patients with benign cystic thyroid nodules: a pilot study. Br J Radiol 2006;79:943-947 https://doi.org/10.1259/bjr/40698061
  50. Cakir B, Topaloglu O, Gul K, Agac T, Aydin C, Dirikoc A, et al. Effects of percutaneous laser ablation treatment in benign solitary thyroid nodules on nodule volume, thyroglobulin and anti-thyroglobulin levels, and cytopathology of nodule in 1 yr follow-up. J Endocrinol Invest 2006;29:876-884
  51. Dossing H, Bennedbaek FN, Hegedus L. Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule: the introduction of a novel alternative. Thyroid 2003;13:885-888 https://doi.org/10.1089/105072503322401104
  52. Dossing H, Bennedbaek FN, Hegedus L. Effect of ultrasoundguided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules - a randomised study. Eur J Endocrinol 2005;152:341-345 https://doi.org/10.1530/eje.1.01865
  53. Gambelunghe G, Fatone C, Ranchelli A, Fanelli C, Lucidi P, Cavaliere A, et al. A randomized controlled trial to evaluate the efficacy of ultrasound-guided laser photocoagulation for treatment of benign thyroid nodules. J Endocrinol Invest 2006;29:RC23-26
  54. Valcavi R, Bertani A, Pesenti ML, Al Jandali Rifa' L, Frasoldati A, Formisano D, et al. Laser and radiofrequency ablation procedures. In: Baskin HJ, Duick DS, Levine RA, eds. Thyroid ultrasound and ultrasound-guided FNA biopsy. New York: Springer, 2008:191-218
  55. Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid 2010;20:1253-1261 https://doi.org/10.1089/thy.2010.0189
  56. Papini E, Bizzarri G, Pacella CM. Percutaneous laser ablation of benign and malignant thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2008;15:434-439 https://doi.org/10.1097/MED.0b013e32830eb89a
  57. Hegedus L. Therapy: a new nonsurgical therapy option for benign thyroid nodules? Nat Rev Endocrinol 2009;5:476-478 https://doi.org/10.1038/nrendo.2009.152

Cited by

  1. Symptomatic benign thyroid nodules: efficacy of additional radiofrequency ablation treatment session--prospective randomized study. vol.263, pp.3, 2011, https://doi.org/10.1148/radiol.12111300
  2. Radiofrequency Ablation of Thyroid Nodules: Basic Principles and Clinical Application vol.2012, pp.None, 2012, https://doi.org/10.1155/2012/919650
  3. Thyroid Nodules Treated with Percutaneous Radiofrequency Thermal Ablation: A Comparative Study vol.97, pp.12, 2011, https://doi.org/10.1210/jc.2012-2251
  4. Radiofrequency Ablation of Benign Thyroid Nodules and Recurrent Thyroid Cancers: Consensus Statement and Recommendations vol.13, pp.2, 2012, https://doi.org/10.3348/kjr.2012.13.2.117
  5. Cystic versus predominantly cystic thyroid nodules: efficacy of ethanol ablation and analysis of related factors vol.22, pp.7, 2012, https://doi.org/10.1007/s00330-012-2406-5
  6. Percutaneous microwave coagulation for eradication of VX2 tumors subcutaneously in rabbits vol.10, pp.None, 2011, https://doi.org/10.1186/1477-7819-10-97
  7. Radiofrequency Ablation of Benign Thyroid Nodules Does Not Affect Thyroid Function in Patients with Previous Lobectomy vol.23, pp.3, 2011, https://doi.org/10.1089/thy.2012.0171
  8. Single-Session Treatment of Benign Cystic Thyroid Nodules with Ethanol versus Radiofrequency Ablation: A Prospective Randomized Study vol.269, pp.1, 2013, https://doi.org/10.1148/radiol.13122134
  9. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/428363
  10. Combination Therapy of Temporary Tracheal Stenting and Radiofrequency Ablation for Multinodular Thyroid Goiter with Airway Compression vol.14, pp.5, 2011, https://doi.org/10.3348/kjr.2013.14.5.805
  11. A Microbubble Contrast Agent Improves Prediction of Ablated Areas During Radiofrequency Ablation : A Rabbit Liver Study vol.32, pp.5, 2011, https://doi.org/10.7863/jum.2013.32.5.787
  12. Radiofrequency and ethanol ablation for the treatment of recurrent thyroid cancers: current status and challenges vol.25, pp.1, 2013, https://doi.org/10.1097/cco.0b013e32835a583d
  13. Radiofrequency ablation of benign non-functioning thyroid nodules: 4-year follow-up results for 111 patients vol.23, pp.4, 2013, https://doi.org/10.1007/s00330-012-2671-3
  14. Consenso brasileiro para o diagnóstico e tratamento do hipertireoidismo: recomendações do Departamento de Tireoide da Sociedade Brasileira de Endocrinologia e Metabologia vol.57, pp.3, 2011, https://doi.org/10.1590/s0004-27302013000300006
  15. Radiofrequency Ablation in Nodular Thyroid Diseases vol.21, pp.2, 2013, https://doi.org/10.1016/j.jmu.2013.04.006
  16. Comparison of Ablation Zones among Different Tissues Using 2450-MHz Cooled-Shaft Microwave Antenna: Results in Ex Vivo Porcine Models vol.8, pp.8, 2011, https://doi.org/10.1371/journal.pone.0071873
  17. A short review of basic head and neck interventional procedures in a general radiology department vol.13, pp.4, 2011, https://doi.org/10.1102/1470-7330.2013.0043
  18. Efficacy Assessment of Newly Developed Open-Window Intervention Needles for the Treatment of Cystic Thyroid Nodules That Cannot Be Aspirated vol.24, pp.6, 2014, https://doi.org/10.1089/thy.2013.0612
  19. Radiofrequency Ablation Compared to Surgery for the Treatment of Benign Thyroid Nodules vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/934595
  20. Advances in nonsurgical treatment of benign thyroid nodules vol.10, pp.8, 2011, https://doi.org/10.2217/fon.14.59
  21. Combination Therapy Consisting of Ethanol and Radiofrequency Ablation for Predominantly Cystic Thyroid Nodules vol.35, pp.3, 2011, https://doi.org/10.3174/ajnr.a3701
  22. Moving-Shot versus Fixed Electrode Techniques for Radiofrequency Ablation: Comparison in an Ex-Vivo Bovine Liver Tissue Model vol.15, pp.6, 2014, https://doi.org/10.3348/kjr.2014.15.6.836
  23. Radiofrequency Ablation of Benign Thyroid Nodule vol.57, pp.3, 2011, https://doi.org/10.3342/kjorl-hns.2014.57.3.151
  24. Intralesional saline injection for effective ultrasound-guided aspiration of benign viscous cystic thyroid nodules vol.33, pp.2, 2011, https://doi.org/10.14366/usg.13027
  25. Microwave ablation of benign thyroid nodules vol.10, pp.6, 2014, https://doi.org/10.2217/fon.13.260
  26. Protection of skin with subcutaneous administration of 5% dextrose in water during superficial radiofrequency ablation in a rabbit model vol.30, pp.4, 2011, https://doi.org/10.3109/02656736.2014.914250
  27. Vascular and interventional radiology radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: literature review vol.119, pp.7, 2011, https://doi.org/10.1007/s11547-014-0411-2
  28. Feasibility study for the introduction of a new treatment method for benign thyroid nodules in a teaching and research hospital vol.20, pp.5, 2011, https://doi.org/10.1111/jep.12177
  29. Non-surgical, Image-guided Management of Benign Thyroid Nodules vol.7, pp.2, 2011, https://doi.org/10.11106/cet.2014.7.2.111
  30. Efficacy and safety of radiofrequency ablation for treating locoregional recurrence from papillary thyroid cancer vol.25, pp.1, 2011, https://doi.org/10.1007/s00330-014-3405-5
  31. Radiofrequency Ablation for Autonomously Functioning Thyroid Nodules: A Multicenter Study vol.25, pp.1, 2015, https://doi.org/10.1089/thy.2014.0100
  32. Benign Solid Thyroid Nodules: US-guided High-Intensity Focused Ultrasound Ablation-Initial Clinical Outcomes. vol.276, pp.2, 2011, https://doi.org/10.1148/radiol.15141492
  33. Surgical and Pathological Changes after Radiofrequency Ablation of Thyroid Nodules vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/576576
  34. Laser Thermal Ablation of Thyroid Benign Nodules vol.6, pp.4, 2011, https://doi.org/10.15171/jlms.2015.10
  35. Radiofrequency Ablation for Benign Thyroid Nodules — A Look Towards the Future of Interventional Thyroidology vol.21, pp.8, 2011, https://doi.org/10.4158/ep15797.co
  36. Predicting the Size of Benign Thyroid Nodules and Analysis of Associated Factors That Affect Nodule Size vol.51, pp.2, 2015, https://doi.org/10.4068/cmj.2015.51.2.97
  37. Radiofrequency ablation for benign thyroid nodules vol.39, pp.9, 2016, https://doi.org/10.1007/s40618-016-0469-x
  38. Ultrasound-Guided Laser Ablation Using Multidirectional-Firing Fiber for Papillary Thyroid Carcinoma: An Ex Vivo Study with Evaluation of Tumor Cell Viability vol.34, pp.7, 2011, https://doi.org/10.1089/pho.2016.4088
  39. Ultrasound-Guided Percutaneous Ethanol Injection Protocol to Treat Solid and Mixed Thyroid Nodules vol.7, pp.None, 2011, https://doi.org/10.3389/fendo.2016.00052
  40. Morphological Changes Induced by Bipolar Radiofrequency Ablation in Thyroid Nodules – a Preclinical Ex Vivo Investigation vol.12, pp.2, 2011, https://doi.org/10.17925/ee.2016.12.02.85
  41. Ultrasound‐guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: Our experience in 45 patients vol.38, pp.5, 2011, https://doi.org/10.1002/hed.23957
  42. Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up vol.32, pp.5, 2011, https://doi.org/10.3109/02656736.2016.1149234
  43. Radiofrequency ablation of benign thyroid nodules: evaluation of the treatment efficacy using ultrasonography vol.35, pp.3, 2011, https://doi.org/10.14366/usg.15083
  44. Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis : MW ablation estimation using x-ray CT vol.43, pp.8, 2011, https://doi.org/10.1118/1.4954843
  45. Laser ablation is more effective for spongiform than solid thyroid nodules. A 4-year retrospective follow-up study vol.32, pp.7, 2011, https://doi.org/10.1080/02656736.2016.1212279
  46. Preliminary results of ultrasound-guided laser ablation for unresectable metastases to retroperitoneal and hepatic portal lymph nodes vol.14, pp.None, 2011, https://doi.org/10.1186/s12957-016-0917-2
  47. Factors related to recurrence of the benign non-functioning thyroid nodules after percutaneous microwave ablation vol.33, pp.4, 2011, https://doi.org/10.1080/02656736.2016.1274058
  48. Thyroid Radiofrequency Ablation: Updates on Innovative Devices and Techniques vol.18, pp.4, 2011, https://doi.org/10.3348/kjr.2017.18.4.615
  49. Complications Following Radiofrequency Ablation of Benign Thyroid Nodules: A Systematic Review vol.130, pp.11, 2011, https://doi.org/10.4103/0366-6999.206347
  50. First-Line Use of Core Needle Biopsy for High-Yield Preliminary Diagnosis of Thyroid Nodules vol.38, pp.2, 2011, https://doi.org/10.3174/ajnr.a5007
  51. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA) vol.33, pp.3, 2017, https://doi.org/10.1080/02656736.2016.1244707
  52. Factors associated with initial incomplete ablation for benign thyroid nodules after radiofrequency ablation: First results of CEUS evaluation vol.65, pp.4, 2011, https://doi.org/10.3233/ch-16208
  53. Ultrasound-guided microwave ablation in the treatment of benign thyroid nodules in 435 patients vol.242, pp.15, 2017, https://doi.org/10.1177/1535370217727477
  54. US-Guided Percutaneous Radiofrequency versus Microwave Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-09930-7
  55. Urgent need to apply a common language in image-guided thermal ablations vol.21, pp.1, 2018, https://doi.org/10.1007/s40477-017-0278-x
  56. Microwave ablation induces a lower systemic stress response in patients than open surgery for treatment of benign thyroid nodules vol.34, pp.5, 2018, https://doi.org/10.1080/02656736.2018.1427286
  57. Ex vivo comparison between thyroid-dedicated bipolar and monopolar radiofrequency electrodes vol.34, pp.5, 2011, https://doi.org/10.1080/02656736.2018.1437283
  58. A single session of laser ablation for toxic thyroid nodules: three-year follow-up results vol.34, pp.5, 2018, https://doi.org/10.1080/02656736.2018.1437931
  59. Patient satisfaction after thyroid RFA versus surgery for benign thyroid nodules: a telephone survey vol.35, pp.1, 2011, https://doi.org/10.1080/02656736.2018.1487590
  60. Comparison between microwave ablation and bipolar radiofrequency ablation in benign thyroid nodules: differences in energy transmission, duration of application and applied shots vol.35, pp.1, 2018, https://doi.org/10.1080/02656736.2018.1489984
  61. Initial Ablation Ratio: Quantitative Value Predicting the Therapeutic Success of Thyroid Radiofrequency Ablation vol.28, pp.11, 2011, https://doi.org/10.1089/thy.2018.0180
  62. Efficacy and Safety of Radiofrequency Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study vol.19, pp.1, 2011, https://doi.org/10.3348/kjr.2018.19.1.167
  63. Quality of Life in Patients Treated with Percutaneous Laser Ablation for Non-Functioning Benign Thyroid Nodules: A Prospective Single-Center Study vol.19, pp.1, 2018, https://doi.org/10.3348/kjr.2018.19.1.175
  64. 2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.632
  65. High-intensity focused ultrasound (HIFU) therapy for benign thyroid nodules without anesthesia or sedation vol.61, pp.2, 2011, https://doi.org/10.1007/s12020-018-1560-1
  66. Management strategy for nerve damage during radiofrequency ablation of thyroid nodules vol.36, pp.1, 2011, https://doi.org/10.1080/02656736.2018.1554826
  67. US-guided microwave ablation for secondary hyperparathyroidism in patients after renal transplantation: a pilot study vol.36, pp.1, 2011, https://doi.org/10.1080/02656736.2019.1566580
  68. Safety and efficacy of thermal ablation (radiofrequency and laser): should we treat all types of thyroid nodules? vol.36, pp.1, 2011, https://doi.org/10.1080/02656736.2019.1627432
  69. Comparison of ultrasound-guided percutaneous microwave ablation and parathyroidectomy for primary hyperparathyroidism vol.36, pp.1, 2011, https://doi.org/10.1080/02656736.2019.1645365
  70. Laser and radiofrequency ablations for benign and malignant thyroid tumors vol.36, pp.2, 2011, https://doi.org/10.1080/02656736.2019.1622795
  71. Long-Term Outcomes Following Thermal Ablation of Benign Thyroid Nodules as an Alternative to Surgery: The Importance of Controlling Regrowth vol.34, pp.2, 2019, https://doi.org/10.3803/enm.2019.34.2.117
  72. Safety and efficacy of microwave ablation for benign thyroid nodules and papillary thyroid microcarcinomas: A systematic review and meta-analysis vol.118, pp.None, 2011, https://doi.org/10.1016/j.ejrad.2019.06.027
  73. Long-Term Efficacy of a Single Session of RFA for Benign Thyroid Nodules: A Longitudinal 5-Year Observational Study vol.104, pp.9, 2011, https://doi.org/10.1210/jc.2018-02808
  74. Patient satisfaction of radiofrequency ablation for symptomatic benign solid thyroid nodules: our experience for 2-year follow up vol.19, pp.None, 2011, https://doi.org/10.1186/s12885-019-5338-5
  75. Radiofrequency Ablation of Parathyroid Adenomas: Safety and Efficacy in a Study of 10 Patients vol.24, pp.6, 2011, https://doi.org/10.4103/ijem.ijem_671_20
  76. The importance of subcapsular anesthesia in the anesthesiological management for thyroid radiofrequency ablation vol.37, pp.4, 2020, https://doi.org/10.1007/s12032-020-01347-z
  77. Reproducibility of Ablated Volume Measurement Is Higher with Contrast-Enhanced Ultrasound than with B-Mode Ultrasound after Benign Thyroid Nodule Radiofrequency Ablation—A Preliminary Study vol.9, pp.5, 2020, https://doi.org/10.3390/jcm9051504
  78. Efficacy and Safety of Thermal Ablation Techniques for the Treatment of Primary Papillary Thyroid Microcarcinoma: A Systematic Review and Meta-Analysis vol.30, pp.5, 2011, https://doi.org/10.1089/thy.2019.0707
  79. Long-Term Results of Thermal Ablation of Benign Thyroid Nodules: A Systematic Review and Meta-Analysis vol.35, pp.2, 2011, https://doi.org/10.3803/enm.2020.35.2.339
  80. Clinical value of matrix metalloproteinase-2 and -9 in ultrasound-guided radiofrequency ablation treatment for papillary thyroid carcinoma vol.48, pp.8, 2011, https://doi.org/10.1177/0300060520917581
  81. The Efficacy of Ultrasonography-Guided Radiofrequency Ablation in Patients With Benign Thyroid Goiters With a History of Unilateral Lobectomy vol.13, pp.3, 2011, https://doi.org/10.21053/ceo.2020.00164
  82. Five-Year Results of Radiofrequency and Laser Ablation of Benign Thyroid Nodules: A Multicenter Study from the Italian Minimally Invasive Treatments of the Thyroid Group vol.30, pp.12, 2011, https://doi.org/10.1089/thy.2020.0202
  83. Thermal Treatment Options for Benign Thyroid Nodules-The Role of Radio-Frequency Ablation and Laser Therapy vol.33, pp.1, 2011, https://doi.org/10.1089/ct.2021;33.17-20
  84. Efficacy and Safety of Single-Session Radiofrequency Ablation in Treating Benign Thyroid Nodules: A Short-Term Prospective Cohort Study vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/7556393
  85. Comparative efficacy of different ultrasound-guided ablation for the treatment of benign thyroid nodules: Systematic review and network meta-analysis of randomized controlled trials vol.16, pp.1, 2011, https://doi.org/10.1371/journal.pone.0243864
  86. The Ablation of Thyroid Nodule’s Afferent Arteries Before Radiofrequency Ablation: Preliminary Data vol.11, pp.None, 2011, https://doi.org/10.3389/fendo.2020.565000
  87. Radiofrequency Thermal Ablation for a Small Papillary Thyroid Carcinoma in a Patient Unfit for Surgery: A Case Report vol.12, pp.None, 2011, https://doi.org/10.3389/fendo.2021.566362
  88. Long-Term Results of Ultrasound-Guided Radiofrequency Ablation of Benign Thyroid Nodules: State of the Art and Future Perspectives-A Systematic Review vol.12, pp.None, 2011, https://doi.org/10.3389/fendo.2021.622996
  89. Predictor Analysis in Radiofrequency Ablation of Benign Thyroid Nodules: A Single Center Experience vol.12, pp.None, 2011, https://doi.org/10.3389/fendo.2021.638880
  90. Clinical practice guidelines for radiofrequency ablation of benign thyroid nodules: a systematic review vol.40, pp.2, 2021, https://doi.org/10.14366/usg.20015
  91. Technique and Procedural Aspects of Radiofrequency Ablation of Thyroid Nodules vol.9, pp.2, 2021, https://doi.org/10.1007/s40136-020-00321-7
  92. Long-Term Outcomes of Radiofrequency Ablation for Treatment of Cystic Warthin Tumors versus Solid Warthin Tumors vol.18, pp.12, 2011, https://doi.org/10.3390/ijerph18126640
  93. Lidocaine‐induced systemic toxicity complicating radiofrequency ablation of benign thyroid nodule procedure: A case report and review of literature vol.9, pp.10, 2011, https://doi.org/10.1002/ccr3.4910
  94. The Role of CEUS in the Evaluation of Thyroid Cancer: From Diagnosis to Local Staging vol.10, pp.19, 2011, https://doi.org/10.3390/jcm10194559
  95. Efficacy and safety of ultrasound (US)-guided radiofrequency ablation of benign thyroid nodules vol.52, pp.1, 2011, https://doi.org/10.1186/s43055-021-00435-y