References
- Broide DH. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. J Allergy Clin Immunol 2008;121:560-570. https://doi.org/10.1016/j.jaci.2008.01.031
- Mauad T, Bel EH, Sterk PJ. Asthma therapy and airway remodeling. J Allergy Clin Immunol 2007;120:997-1009. https://doi.org/10.1016/j.jaci.2007.06.031
- Pascual RM, Peters SP. Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J Allergy Clin Immunol 2005;116:477-486. https://doi.org/10.1016/j.jaci.2005.07.011
- Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest 2004;113:551-560. https://doi.org/10.1172/JCI19133
- Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science 2004;305:1776-1779. https://doi.org/10.1126/science.1100283
- Fulkerson PC, Fischetti CA, McBride ML, Hassman LM, Hogan SP, Rothenberg ME. A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc Natl Acad Sci U S A 2006;103:16418-16423. https://doi.org/10.1073/pnas.0607863103
- Doherty TA, Soroosh P, Khorram N, et al. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med 2011;17:596-603. https://doi.org/10.1038/nm.2356
- Cho JY, Pham A, Rosenthal P, Miller M, Doherty T, Broide DH. Chronic OVA allergen challenged TNF p55/p75 receptor deficient mice have reduced airway remodeling. Int Immunopharmacol 2011;11:1038-1044. https://doi.org/10.1016/j.intimp.2011.02.024
-
Yum HY, Cho JY, Miller M, Broide DH. Allergen-induced coexpression of bFGF and TGF-
$\beta$ 1 by macrophages in a mouse model of airway remodeling: bFGF induces macrophage TGF-$\beta$ 1 expression in vitro. Int Arch Allergy Immunol 2011;155:12-22. - Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 2000;105(2 Pt 1):193-204. https://doi.org/10.1016/S0091-6749(00)90066-6
- Holgate ST, Arshad HS, Roberts GC, Howarth PH, Thurner P, Davies DE. A new look at the pathogenesis of asthma. Clin Sci (Lond) 2009;118:439-450. https://doi.org/10.1042/CS20090474
- Wang YH, Liu YJ. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clin Exp Allergy 2009;39:798-806. https://doi.org/10.1111/j.1365-2222.2009.03241.x
- Jacquet A. Interactions of airway epithelium with protease allergens in the allergic response. Clin Exp Allergy 2011;41:305-311. https://doi.org/10.1111/j.1365-2222.2010.03661.x
- Rothenberg ME. Eosinophilia. N Engl J Med 1998;338:1592-1600. https://doi.org/10.1056/NEJM199805283382206
- Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 1988;167:219-224. https://doi.org/10.1084/jem.167.1.219
- Flood-Page P, Menzies-Gow A, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 2003;112:1029-1036. https://doi.org/10.1172/JCI17974
- Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009;360:973-984. https://doi.org/10.1056/NEJMoa0808991
- Wegmann M, Goggel R, Sel S, et al. Effects of a low-molecularweight CCR-3 antagonist on chronic experimental asthma. Am J Respir Cell Mol Biol 2007;36:61-67. https://doi.org/10.1165/rcmb.2006-0188OC
- Komai M, Tanaka H, Nagao K, et al. A novel CC-chemokine receptor 3 antagonist, Ki19003, inhibits airway eosinophilia and subepithelial/peribronchial fibrosis induced by repeated antigen challenge in mice. J Pharmacol Sci 2010;112:203-213. https://doi.org/10.1254/jphs.09277FP
- Tateno H, Crocker PR, Paulson JC. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6'-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 2005;15:1125-1135. https://doi.org/10.1093/glycob/cwi097
- Bochner BS, Alvarez RA, Mehta P, et al. Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem 2005;280:4307-4312. https://doi.org/10.1074/jbc.M412378200
- Song DJ, Cho JY, Lee SY, et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol 2009;183:5333-5341. https://doi.org/10.4049/jimmunol.0801421
- Cho JY, Song DJ, Pham A, et al. Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13. Respir Res 2010;11:154. https://doi.org/10.1186/1465-9921-11-154
- Luzina IG, Atamas SP, Wise R, et al. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum 2003;48:2262-2274. https://doi.org/10.1002/art.11080
-
Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-
$\beta$ in airway remodeling in asthma. Am J Respir Cell Mol Biol 2011;44:127-133. https://doi.org/10.1165/rcmb.2010-0027TR - Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol 1992;72:1016-1023. https://doi.org/10.1152/jappl.1992.72.3.1016
- McMillan SJ, Xanthou G, Lloyd CM. Manipulation of allergeninduced airway remodeling by treatment with anti-TGF-beta antibody: effect on the Smad signaling pathway. J Immunol 2005;174:5774-5780. https://doi.org/10.4049/jimmunol.174.9.5774
- Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117:524-529. https://doi.org/10.1172/JCI31487
- Le AV, Cho JY, Miller M, McElwain S, Golgotiu K, Broide DH. Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice. J Immunol 2007;178:7310-7316. https://doi.org/10.4049/jimmunol.178.11.7310
- Gregory LG, Mathie SA, Walker SA, Pegorier S, Jones CP, Lloyd CM. Overexpression of Smad2 drives house dust mite-mediated airway remodeling and airway hyperresponsiveness via activin and IL-25. Am J Respir Crit Care Med 2010;182:143-154. https://doi.org/10.1164/rccm.200905-0725OC
- Redington AE, Madden J, Frew AJ, et al. Transforming growth factor-beta 1 in asthma: measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 1997;156:642-647. https://doi.org/10.1164/ajrccm.156.2.9605065
- Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 2003;111:1293-1298. https://doi.org/10.1067/mai.2003.1557
- Girodet PO, Ozier A, Bara I, Tunon de Lara JM, Marthan R, Berger P. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacol Ther 2011;130:325-337. https://doi.org/10.1016/j.pharmthera.2011.02.001
- Bosse Y, Rola-Pleszczynski M. FGF2 in asthmatic airwaysmooth- muscle-cell hyperplasia. Trends Mol Med 2008;14:3-11. https://doi.org/10.1016/j.molmed.2007.11.003
- Bosse Y, Thompson C, Stankova J, Rola-Pleszczynski M. Fibroblast growth factor 2 and transforming growth factor beta1 synergism in human bronchial smooth muscle cell proliferation. Am J Respir Cell Mol Biol 2006;34:746-753. https://doi.org/10.1165/rcmb.2005-0309OC
- Strutz F, Zeisberg M, Renziehausen A, et al. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 2001;59:579-592. https://doi.org/10.1046/j.1523-1755.2001.059002579.x
- Qu Z, Kayton RJ, Ahmadi P, et al. Ultrastructural immunolocalization of basic fibroblast growth factor in mast cell secretory granules: morphological evidence for bfgf release through degranulation. J Histochem Cytochem 1998;46:1119-1128. https://doi.org/10.1177/002215549804601004
- Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000;7:165-197. https://doi.org/10.1677/erc.0.0070165
- Bosse Y, Stankova J, Rola-Pleszczynski M. Transforming growth factor-beta1 in asthmatic airway smooth muscle enlargement: is fibroblast growth factor-2 required? Clin Exp Allergy 2010;40:710-724. https://doi.org/10.1111/j.1365-2222.2010.03497.x
- Cho SH, Yao Z, Wang SW, et al. Regulation of activin A expression in mast cells and asthma: its effect on the proliferation of human airway smooth muscle cells. J Immunol 2003;170:4045-4052. https://doi.org/10.4049/jimmunol.170.8.4045
- Jeon SG, Lee CG, Oh MH, et al. Recombinant basic fibroblast growth factor inhibits the airway hyperresponsiveness, mucus production, and lung inflammation induced by an allergen challenge. J Allergy Clin Immunol 2007;119:831-837. https://doi.org/10.1016/j.jaci.2006.12.653
- Kanazawa H, Yoshikawa T. Up-regulation of thrombin activity induced by vascular endothelial growth factor in asthmatic airways. Chest 2007;132:1169-1174. https://doi.org/10.1378/chest.07-0945
- Redington AE, Roche WR, Madden J, et al. Basic fibroblast growth factor in asthma: measurement in bronchoalveolar lavage fluid basally and following allergen challenge. J Allergy Clin Immunol 2001;107:384-387. https://doi.org/10.1067/mai.2001.112268
- Clauss M. Functions of the VEGF receptor-1 (FLT-1) in the vasculature. Trends Cardiovasc Med 1998;8:241-245. https://doi.org/10.1016/S1050-1738(98)00015-2
- Charan NB, Baile EM, Pare PD. Bronchial vascular congestion and angiogenesis. Eur Respir J 1997;10:1173-1180. https://doi.org/10.1183/09031936.97.10051173
- Antony AB, Tepper RS, Mohammed KA. Cockroach extract antigen increases bronchial airway epithelial permeability. J Allergy Clin Immunol 2002;110:589-595. https://doi.org/10.1067/mai.2002.127798
- Lee CG, Link H, Baluk P, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004;10:1095-1103. https://doi.org/10.1038/nm1105
- Bhandari V, Choo-Wing R, Chapoval SP, et al. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci U S A 2006;103:11021-11026. https://doi.org/10.1073/pnas.0601057103
- Asai K, Kanazawa H, Otani K, Shiraishi S, Hirata K, Yoshikawa J. Imbalance between vascular endothelial growth factor and endostatin levels in induced sputum from asthmatic subjects. J Allergy Clin Immunol 2002;110:571-575. https://doi.org/10.1067/mai.2002.127797
- Abdel-Rahman AM, el-Sahrigy SA, Bakr SI. A comparative study of two angiogenic factors: vascular endothelial growth factor and angiogenin in induced sputum from asthmatic children in acute attack. Chest 2006;129:266-271. https://doi.org/10.1378/chest.129.2.266
- Bae YJ, Kim TB, Moon KA, et al. Vascular endothelial growth factor levels in induced sputum and emphysematous changes in smoking asthmatic patients. Ann Allergy Asthma Immunol 2009;103:51-56. https://doi.org/10.1016/S1081-1206(10)60143-3
- Costa JJ, Matossian K, Resnick MB, et al. Human eosinophils can express the cytokines tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha. J Clin Invest 1993;91:2673-2684. https://doi.org/10.1172/JCI116506
- Reuter S, Heinz A, Sieren M, et al. Mast cell-derived tumour necrosis factor is essential for allergic airway disease. Eur Respir J 2008;31:773-782. https://doi.org/10.1183/09031936.00058907
- Nakae S, Ho LH, Yu M, et al. Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. J Allergy Clin Immunol 2007;120:48-55. https://doi.org/10.1016/j.jaci.2007.02.046
- Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006;354:697-708. https://doi.org/10.1056/NEJMoa050580
- Vandenbroucke RE, Dejonckheere E, Libert C. A therapeutic role for MMP inhibitors in lung diseases? Eur Respir J 2011;38:1200-1214. https://doi.org/10.1183/09031936.00027411
- Lim DH, Cho JY, Miller M, McElwain K, McElwain S, Broide DH. Reduced peribronchial fibrosis in allergen-challenged MMP-9-deficient mice. Am J Physiol Lung Cell Mol Physiol 2006;291:L265-L271. https://doi.org/10.1152/ajplung.00305.2005
- Lee YC, Lee HB, Rhee YK, Song CH. The involvement of matrix metalloproteinase-9 in airway inflammation of patients with acute asthma. Clin Exp Allergy 2001;31:1623-1630. https://doi.org/10.1046/j.1365-2222.2001.01211.x
- Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002;418:426-430. https://doi.org/10.1038/nature00878
- Jie Z, Jin M, Cai Y, et al. The effects of Th2 cytokines on the expression of ADAM33 in allergen-induced chronic airway inflammation. Respir Physiol Neurobiol 2009;168:289-294. https://doi.org/10.1016/j.resp.2009.07.019
- Foley SC, Mogas AK, Olivenstein R, et al. Increased expression of ADAM33 and ADAM8 with disease progression in asthma. J Allergy Clin Immunol 2007;119:863-871. https://doi.org/10.1016/j.jaci.2006.12.665
- Lloyd CM. IL-33 family members and asthma - bridging innate and adaptive immune responses. Curr Opin Immunol 2010;22:800-806. https://doi.org/10.1016/j.coi.2010.10.006
- Shan L, Redhu NS, Saleh A, Halayko AJ, Chakir J, Gounni AS. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways. J Immunol 2010;184:7134-7143. https://doi.org/10.4049/jimmunol.0902515
- Al-Shami A, Spolski R, Kelly J, Keane-Myers A, Leonard WJ. A role for TSLP in the development of inflammation in an asthma model. J Exp Med 2005;202:829-839. https://doi.org/10.1084/jem.20050199
- Zhang F, Huang G, Hu B, Song Y, Shi Y. A soluble thymic stromal lymphopoietin (TSLP) antagonist, TSLPR-immunoglobulin, reduces the severity of allergic disease by regulating pulmonary dendritic cells. Clin Exp Immunol 2011;164:256-264. https://doi.org/10.1111/j.1365-2249.2011.04328.x
- Heijink IH, Postma DS, Noordhoek JA, Broekema M, Kapus A. House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium. Am J Respir Cell Mol Biol 2010;42:69-79. https://doi.org/10.1165/rcmb.2008-0449OC
- Heijink IH, van Oosterhout A, Kapus A. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction. Eur Respir J 2010;36:1016-1026. https://doi.org/10.1183/09031936.00125809
- Ying S, O'Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174:8183-8190. https://doi.org/10.4049/jimmunol.174.12.8183
- Ying S, O'Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol 2008;181:2790-2798. https://doi.org/10.4049/jimmunol.181.4.2790
- Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 2005;6:1047-1053. https://doi.org/10.1038/ni1247
- Owyang AM, Zaph C, Wilson EH, et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med 2006;203:843-849. https://doi.org/10.1084/jem.20051496
- Angkasekwinai P, Park H, Wang YH, et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 2007;204:1509-1517. https://doi.org/10.1084/jem.20061675
- Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001;15:985-995. https://doi.org/10.1016/S1074-7613(01)00243-6
- Hurst SD, Muchamuel T, Gorman DM, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 2002;169:443-453. https://doi.org/10.4049/jimmunol.169.1.443
- Corrigan CJ, Wang W, Meng Q, et al. T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proc Natl Acad Sci U S A 2011;108:1579-1584. https://doi.org/10.1073/pnas.1014241108
- Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1- like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005;23:479-490. https://doi.org/10.1016/j.immuni.2005.09.015
- Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007;117:1538-1549. https://doi.org/10.1172/JCI30634
- Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL- 33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS One 2008;3:e3331. https://doi.org/10.1371/journal.pone.0003331
- Wood IS, Wang B, Trayhurn P. IL-33, a recently identified interleukin- 1 gene family member, is expressed in human adipocytes. Biochem Biophys Res Commun 2009;384:105-109. https://doi.org/10.1016/j.bbrc.2009.04.081
- Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 2009;183:6469-6477. https://doi.org/10.4049/jimmunol.0901575
- Kondo Y, Yoshimoto T, Yasuda K, et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol 2008;20:791-800. https://doi.org/10.1093/intimm/dxn037
- Zhiguang X, Wei C, Steven R, et al. Over-expression of IL- 33 leads to spontaneous pulmonary inflammation in mIL-33 transgenic mice. Immunol Lett 2010;131:159-165. https://doi.org/10.1016/j.imlet.2010.04.005
- Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun 2009;386:181-185. https://doi.org/10.1016/j.bbrc.2009.06.008
- Coyle AJ, Lloyd C, Tian J, et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J Exp Med 1999;190:895-902. https://doi.org/10.1084/jem.190.7.895
- Rankin AL, Mumm JB, Murphy E, et al. IL-33 induces IL-13- dependent cutaneous fibrosis. J Immunol 2010;184:1526-1535. https://doi.org/10.4049/jimmunol.0903306
- Prefontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol 2010;125:752-754. https://doi.org/10.1016/j.jaci.2009.12.935
- Smith DE. IL-33: a tissue derived cytokine pathway involved in allergic inf lammation and asthma. Clin Exp Allergy 2010;40:200-208. https://doi.org/10.1111/j.1365-2222.2009.03384.x
- Rasmussen F, Taylor DR, Flannery EM, et al. Risk factors for airway remodeling in asthma manifested by a low postbronchodilator FEV1/vital capacity ratio: a longitudinal population study from childhood to adulthood. Am J Respir Crit Care Med 2002;165:1480-1488. https://doi.org/10.1164/rccm.2108009
- Mitsunobu F, Tanizaki Y. The use of computed tomography to assess asthma severity. Curr Opin Allergy Clin Immunol 2005;5:85-90. https://doi.org/10.1097/00130832-200502000-00015
- Gupta S, Siddiqui S, Haldar P, et al. Quantitative analysis of high-resolution computed tomography scans in severe asthma subphenotypes. Thorax 2010;65:775-781. https://doi.org/10.1136/thx.2010.136374
- Aysola R, de Lange EE, Castro M, Altes TA. Demonstration of the heterogeneous distribution of asthma in the lungs using CT and hyperpolarized helium-3 MRI. J Magn Reson Imaging 2010;32:1379-1387. https://doi.org/10.1002/jmri.22388
- de Lange EE, Altes TA, Patrie JT, et al. Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 2006;130:1055-1062. https://doi.org/10.1378/chest.130.4.1055
- Fain SB, Gonzalez-Fernandez G, Peterson ET, et al. Evaluation of structure-function relationships in asthma using multidetector CT and hyperpolarized He-3 MRI. Acad Radiol 2008;15:753-762. https://doi.org/10.1016/j.acra.2007.10.019
- Delimpoura V, Bakakos P, Tseliou E, et al. Increased levels of osteopontin in sputum supernatant in severe refractory asthma. Thorax 2010;65:782-786. https://doi.org/10.1136/thx.2010.138552
- Broekema M, Timens W, Vonk JM, et al. Persisting remodeling and less airway wall eosinophil activation in complete remission of asthma. Am J Respir Crit Care Med 2011;183:310-316. https://doi.org/10.1164/rccm.201003-0494OC
- Wang K, Liu CT, Wu YH, et al. Effects of formoterol-budesonide on airway remodeling in patients with moderate asthma. Acta Pharmacol Sin 2011;32:126-132. https://doi.org/10.1038/aps.2010.170
- Palikhe NS, Kim JH, Park HS. Biomarkers predicting isocyanate- induced asthma. Allergy Asthma Immunol Res 2011;3:21-26. https://doi.org/10.4168/aair.2011.3.1.21
- Soja J, Grzanka P, Sladek K, et al. The use of endobronchial ultrasonography in assessment of bronchial wall remodeling in patients with asthma. Chest 2009;136:797-804. https://doi.org/10.1378/chest.08-2759
- Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol 2005;115:459-465. https://doi.org/10.1016/j.jaci.2004.11.053
- Rabe KF, Calhoun WJ, Smith N, Jimenez P. Can anti-IgE therapy prevent airway remodeling in allergic asthma? Allergy 2011;66:1142-1151. https://doi.org/10.1111/j.1398-9995.2011.02617.x
- van Rensen EL, Evertse CE, van Schadewijk WA, et al. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment. Allergy 2009;64:72-80. https://doi.org/10.1111/j.1398-9995.2008.01881.x
- Holgate S, Smith N, Massanari M, Jimenez P. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy 2009;64:1728-1736. https://doi.org/10.1111/j.1398-9995.2009.02201.x
- Kang JY, Kim JW, Kim JS, et al. Inhibitory effects of anti-immunoglobulin E antibodies on airway remodeling in a murine model of chronic asthma. J Asthma 2010;47:374-380. https://doi.org/10.3109/02770901003801972
- Corren J. Cytokine inhibition in severe asthma: current knowledge and future directions. Curr Opin Pulm Med 2011;17:29-33. https://doi.org/10.1097/MCP.0b013e3283413105
- Nair P, Pizzichini MM, Kjarsgaard M, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 2009;360:985-993. https://doi.org/10.1056/NEJMoa0805435
- Gruenberg D, Busse W. Biologic therapies for asthma. Curr Opin Pulm Med 2010;16:19-24. https://doi.org/10.1097/MCP.0b013e3283328398
- Holgate ST, Noonan M, Chanez P, et al. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. Eur Respir J 2011;37:1352-1359. https://doi.org/10.1183/09031936.00063510
- Erin EM, Leaker BR, Nicholson GC, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma. Am J Respir Crit Care Med 2006;174:753-762. https://doi.org/10.1164/rccm.200601-072OC
- Wenzel SE, Barnes PJ, Bleecker ER, et al. A randomized, double- blind, placebo-controlled study of tumor necrosis factoralpha blockade in severe persistent asthma. Am J Respir Crit Care Med 2009;179:549-558. https://doi.org/10.1164/rccm.200809-1512OC
- Borish LC, Nelson HS, Corren J, et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 2001;107:963-970. https://doi.org/10.1067/mai.2001.115624
- Hart TK, Blackburn MN, Brigham-Burke M, et al. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol 2002;130:93-100. https://doi.org/10.1046/j.1365-2249.2002.01973.x
- Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 2007;370:1422-1431. https://doi.org/10.1016/S0140-6736(07)61600-6
- Corren J, Busse W, Meltzer EO, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med 2010;181:788-796. https://doi.org/10.1164/rccm.200909-1448OC
- Busse WW, Israel E, Nelson HS, et al. Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial. Am J Respir Crit Care Med 2008;178:1002-1008. https://doi.org/10.1164/rccm.200708-1200OC
- Berlin AA, Hogaboam CM, Lukacs NW. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergeninduced asthma. Lab Invest 2006;86:557-565. https://doi.org/10.1038/labinvest.3700419
- Humbert M, de Blay F, Garcia G, et al. Masitinib, a c-kit/ PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy 2009;64:1194-1201. https://doi.org/10.1111/j.1398-9995.2009.02122.x
- Dube J, Chakir J, Dube C, Grimard Y, Laviolette M, Boulet LP. Synergistic action of endothelin (ET)-1 on the activation of bronchial fibroblast isolated from normal and asthmatic subjects. Int J Exp Pathol 2000;81:429-437.
- Taille C, Guenegou A, Almolki A, et al. ETB receptor polymorphism is associated with airway obstruction. BMC Pulm Med 2007;7:5. https://doi.org/10.1186/1471-2466-7-5
- Zhu G, Carlsen K, Carlsen KH, et al. Polymorphisms in the endothelin-1 (EDN1) are associated with asthma in two populations. Genes Immun 2008;9:23-29. https://doi.org/10.1038/sj.gene.6364441
- Trian T, Benard G, Begueret H, et al. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med 2007;204:3173-3181. https://doi.org/10.1084/jem.20070956
- Menzies D, Nair A, Meldrum KT, Fleming D, Barnes M, Lipworth BJ. Simvastatin does not exhibit therapeutic antiinf lammatory effects in asthma. J Allergy Clin Immunol 2007;119:328-335. https://doi.org/10.1016/j.jaci.2006.10.014
- Hothersall EJ, Chaudhuri R, McSharry C, et al. Effects of atorvastatin added to inhaled corticosteroids on lung function and sputum cell counts in atopic asthma. Thorax 2008;63:1070-1075. https://doi.org/10.1136/thx.2008.100198
- Danek CJ, Lombard CM, Dungworth DL, et al. Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs. J Appl Physiol 2004;97:1946-1953. https://doi.org/10.1152/japplphysiol.01282.2003
- Miller JD, Cox G, Vincic L, Lombard CM, Loomas BE, Danek CJ. A prospective feasibility study of bronchial thermoplasty in the human airway. Chest 2005;127:1999-2006. https://doi.org/10.1378/chest.127.6.1999
- Cox G, Miller JD, McWilliams A, Fitzgerald JM, Lam S. Bronchial thermoplasty for asthma. Am J Respir Crit Care Med 2006;173:965-969. https://doi.org/10.1164/rccm.200507-1162OC
- Cox G, Thomson NC, Rubin AS, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med 2007;356:1327-1337. https://doi.org/10.1056/NEJMoa064707
- Castro M, Rubin AS, Laviolette M, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med 2010;181:116-124. https://doi.org/10.1164/rccm.200903-0354OC
- Castro M, Rubin A, Laviolette M, et al. Persistence of effectiveness of bronchial thermoplasty in patients with severe asthma. Ann Allergy Asthma Immunol 2011;107:65-70. https://doi.org/10.1016/j.anai.2011.03.005
- Thomson NC, Rubin AS, Niven RM, et al. Long-term (5 year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm Med 2011;11:8. https://doi.org/10.1186/1471-2466-11-8
Cited by
- trans -Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca 2+ Channels vol.17, pp.10, 2011, https://doi.org/10.3390/molecules171011965
- Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures vol.13, pp.2, 2011, https://doi.org/10.1002/pmic.201200337
- AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma : Mas agonist prevents asthma pulmonary remodelling vol.170, pp.4, 2013, https://doi.org/10.1111/bph.12318
- Immune response to Streptococcus pneumoniae in asthma patients: comparison between stable situation and exacerbation vol.173, pp.1, 2011, https://doi.org/10.1111/cei.12082
- Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0064281
- Biomolecular markers in assessment and treatment of asthma vol.19, pp.4, 2011, https://doi.org/10.1111/resp.12284
- Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma vol.15, pp.1, 2011, https://doi.org/10.1186/1465-9921-15-46
- FIZZ1 promotes airway remodeling through the PI3K/Akt signaling pathway in asthma vol.7, pp.5, 2011, https://doi.org/10.3892/etm.2014.1580
- Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children vol.16, pp.None, 2011, https://doi.org/10.1186/s12931-015-0185-7
- Diosmetin prevents TGF-β1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways vol.153, pp.None, 2011, https://doi.org/10.1016/j.lfs.2016.04.023
- Dietary flavanones and citrus fruits influence cytokines and thyroid transcription factor-1 in an HDM-induced chronic asthma murine model vol.26, pp.None, 2011, https://doi.org/10.1016/j.jff.2016.08.033
- Bacillus Calmette-Guerin alleviates airway inflammation and remodeling by preventing TGF-β1 induced epithelial–mesenchymal transition vol.13, pp.8, 2011, https://doi.org/10.1080/21645515.2017.1313366
- MicroRNA-145 down-regulates mucin 5AC to alleviate airway remodeling and targets EGFR to inhibit cytokine expression vol.8, pp.28, 2011, https://doi.org/10.18632/oncotarget.17933
- The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways vol.8, pp.None, 2011, https://doi.org/10.3389/fimmu.2017.00763
- New targets for resolution of airway remodeling in obstructive lung diseases vol.7, pp.None, 2018, https://doi.org/10.12688/f1000research.14581.1
- Epigallocatechin-3-gallate inhibits inflammation and epithelial-mesenchymal transition through the PI3K/AKT pathway via upregulation of PTEN in asthma vol.41, pp.2, 2018, https://doi.org/10.3892/ijmm.2017.3292
- Type 2-High Severe Asthma with and without Bronchiectasis: A Prospective Observational Multicentre Study vol.14, pp.None, 2021, https://doi.org/10.2147/jaa.s332245
- Bixin protects mice against bronchial asthma though modulating PI3K/Akt pathway vol.101, pp.no.pb, 2011, https://doi.org/10.1016/j.intimp.2021.108266