Laminar flow activation of ERK5 leads to cytoprotective effect via CHIP-mediated p53 ubiquitination in endothelial cells

  • Lim, Jae-Hyang (Department of Biology and Center for Infl ammation, Immunity and Infection, Georgia State University) ;
  • Woo, Chang-Hoon (Department of Pharmacology and Aging-associated Vascular Disease Research Center, Yeungnam University College of Medicine)
  • Published : 2011.12.31

Abstract

Atherosclerosis is readily observed in areas where disturbed flow is formed, while the atheroprotective region is found in areas with steady laminar flow (L-flow). It has been established that L-flow protects endothelial cells against endothelial dysfunction, including apoptosis and inflammation. It has also been reported that extracellular signal-regulated kinase 5 (ERK5) regulated endothelial integrity and protected endothelial cells from vascular dysfunction and disease under L-flow. However, the molecular mechanism by which L-flow-induced ERK5 activation inhibits endothelial apoptosis has not yet been determined. Transcription factor p53 is a major pro-apoptotic factor which contributes to apoptosis in various cell types. In this study, we found that 15-deoxy-$\Delta$(12,14)-prostaglandin J2 induced p53 expression and that endothelial apoptosis was reduced under the L-flow condition. This anti-apoptotic response was reversed by the biochemical inhibition of ERK5 activation. It was also found that activation of ERK5 protected endothelial apoptosis in a C terminus of Hsc70-interacting protein (CHIP) ubiquitin ligasedependent manner. Moreover, molecular interaction between ERK5-CHIP and p53 ubiquitination were addressed with a CHIP ubiquitin ligase activity assay. Taken together, our data suggest that the ERK5-CHIP signal module elicited by L-flow plays an important role in the anti-apoptotic mechanism in endothelial cells.

Keywords

References

  1. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006;114:55-62. https://doi.org/10.1161/CIRCULATIONAHA.106.619056
  2. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-74. https://doi.org/10.1038/nature01323
  3. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035-42. https://doi.org/10.1001/jama.282.21.2035
  4. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 2004;101:14871-6. https://doi.org/10.1073/pnas.0406073101
  5. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA Jr, Garcia-Cardena G. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2006;116:49-58.
  6. Heo KS, Lee H, Nigro P, Th omas T, Le NT, Chang E, McClain C, Reinhart-King CA, King MR, Berk BC, Fujiwara K, Woo CH, Abe J. $PKC{\zeta}$ mediates disturbed fl ow-induced endothelial apoptosis via p53 SUMOylation. J Cell Biol 2011;193:867-84. https://doi.org/10.1083/jcb.201010051
  7. Yoshizumi M, Abe J, Tsuchiya K, Berk BC, Tamaki T. Stress and vascular responses: atheroprotective eff ect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci 2003;91:172-6. https://doi.org/10.1254/jphs.91.172
  8. Akaike M, Che W, Marmarosh NL, Ohta S, Osawa M, Ding B, Berk BC, Yan C, Abe J. The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) mediates interaction with extracellular signal-regulated kinase 5 and PPARgamma1 transcriptional activation: involvement in flowinduced PPARgamma activation in endothelial cells. Mol Cell Biol 2004;24:8691-704. https://doi.org/10.1128/MCB.24.19.8691-8704.2004
  9. Buschbeck M, Ullrich A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem 2005;280:2659-67. https://doi.org/10.1074/jbc.M412599200
  10. Suzaki Y, Yoshizumi M, Kagami S, Koyama AH, Taketani Y, Houchi H, Tsuchiya K, Takeda E, Tamaki T. Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells: potential role in cell survival following oxidative insults. J Biol Chem 2002;277:9614-21. https://doi.org/10.1074/jbc.M111790200
  11. Regan CP, Li W, Boucher DM, Spatz S, Su MS, Kuida K. Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci USA 2002;99:9248-53. https://doi.org/10.1073/pnas.142293999
  12. Pi X, Yan C, Berk BC. Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis. Circ Res 2004;94:362-9. https://doi.org/10.1161/01.RES.0000112406.27800.6F
  13. Garin G, Abe J, Mohan A, Lu W, Yan C, Newby AC, Rhaman A, Berk BC. Flow antagonizes TNF-alpha signaling in endothelial cells by inhibiting caspase-dependent PKC zeta processing. Circ Res 2007;101:97-105. https://doi.org/10.1161/CIRCRESAHA.107.148270
  14. Taketa K, Matsumura T, Yano M, Ishii N, Senokuchi T, Motoshima H, Murata Y, Kim-Mitsuyama S, Kawada T, Itabe H, Takeya M, Nishikawa T, Tsuruzoe K, Araki E. Oxidized low density lipoprotein activates peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma through MAPKdependent COX-2 expression in macrophages. J Biol Chem 2008;283:9852-62. https://doi.org/10.1074/jbc.M703318200
  15. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995;83:803-12. https://doi.org/10.1016/0092-8674(95)90193-0
  16. Uchida K, Shibata T. 15-Deoxy-Delta(12,14)-prostaglandin J2: an electrophilic trigger of cellular responses. Chem Res Toxicol 2008;21:138-44. https://doi.org/10.1021/tx700177j
  17. Bishop-Bailey D, Hla T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2. J Biol Chem 1999;274:17042-8. https://doi.org/10.1074/jbc.274.24.17042
  18. Dong YG, Chen DD, He JG, Guan YY. Effects of 15-deoxydelta12,14- prostaglandin J2 on cell proliferation and apoptosis in ECV304 endothelial cells. Acta Pharmacol Sin 2004;25:47-53.
  19. Erl W, Weber C, Zernecke A, Neuzil J, Vosseler CA, Kim HJ, Weber PC. Cyclopentenone prostaglandins induce endothelial cell apoptosis independent of the peroxisome proliferatoractivated receptor-gamma. Eur J Immunol 2004;34:241-50. https://doi.org/10.1002/eji.200324053
  20. Vosseler CA, Erl W, Weber PC. Structural requirements of cyclopentenone prostaglandins to induce endothelial cell apoptosis. Biochem Biophys Res Commun 2003;307:322-6. https://doi.org/10.1016/S0006-291X(03)01204-X
  21. Ikai K, Kudo H, Toda K, Fukushima M. Induction of apoptosis, p53 and heme oxygenase-1 by cytotoxic prostaglandin delta12- PGJ2 in transformed endothelial cells. Prostaglandins Leukot Essent Fatty Acids 1998;58:295-300. https://doi.org/10.1016/S0952-3278(98)90039-4
  22. Ho TC, Chen SL, Yang YC, Chen CY, Feng FP, Hsieh JW, Cheng HC, Tsao YP. 15-deoxy-Delta(12,14)-prostaglandin J2 induces vascular endothelial cell apoptosis through the sequential activation of MAPKS and p53. J Biol Chem 2008;283:30273-88. https://doi.org/10.1074/jbc.M804196200
  23. Esser C, Scheffner M, Hohfeld J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degra dation. J Biol Chem 2005;280:27443-8. https://doi.org/10.1074/jbc.M501574200
  24. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z. Mdm2 association with p53 targets its ubiquitination. Oncogene 1998;17:2543-7. https://doi.org/10.1038/sj.onc.1202200
  25. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997;420:25-7. https://doi.org/10.1016/S0014-5793(97)01480-4
  26. Woo CH, Le NT, Shishido T, Chang E, Lee H, Heo KS, Mickelsen DM, Lu Y, McClain C, Spangenberg T, Yan C, Molina CA, Yang J, Patterson C, Abe J. Novel role of C terminus of Hsc70-interacting protein (CHIP) ubiquitin ligase on inhibiting cardiac apoptosis and dysfunction via regulating ERK5-mediated degradation of inducible cAMP early repressor. FASEB J 2010;24:4917-28. https://doi.org/10.1096/fj.10-162636
  27. Fleming I, Bauersachs J, Fisslthaler B, Busse R. Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 1998;82:686-95. https://doi.org/10.1161/01.RES.82.6.686
  28. Woo CH, Massett MP, Shishido T, Itoh S, Ding B, McClain C, Che W, Vulapalli SR, Yan C, Abe J. ERK5 activation inhi bits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J Biol Chem 2006;281:32164-74. https://doi.org/10.1074/jbc.M602369200
  29. Min JH, Kim DK, Kwak HH, Kim GC, Lee SE, Kim IR, Kim CH, Park BS. Chios gum mastic induces cell cycle arrest and apoptosis in human osteosarcoma cells. Korean J Anat 2009;42:245-56.
  30. Brooks CL, Gu W. p53 regulation by ubiquitin. FEBS Lett 2011;585:2803-9. https://doi.org/10.1016/j.febslet.2011.05.022
  31. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11:577-90. https://doi.org/10.1016/S1097-2765(03)00050-9
  32. Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifi cations regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 2007;9:428-35. https://doi.org/10.1038/ncb1562
  33. Li L, Tatake RJ, Natarajan K, Taba Y, Garin G, Tai C, Leung E, Surapisitchat J, Yoshizumi M, Yan C, Abe J, Berk BC. Fluid shear stress inhibits TNF-mediated JNK activation via MEK5- BMK1 in endothelial cells. Biochem Biophys Res Commun 2008;370:159-63. https://doi.org/10.1016/j.bbrc.2008.03.051