DOI QR코드

DOI QR Code

Preparation of Pt Catalyst Supported on Zeolite Sheet and Its Performance of Toluene Combustion

제올라이트 쉬트 담지 백금촉매의 제조 및 톨루엔 연소 특성

  • 김진배 (호서대학교 화학공학과) ;
  • 임나래 (호서대학교 화학공학과) ;
  • 김홍수 (한국에너지기술연구원) ;
  • 유윤종 (한국에너지기술연구원)
  • Received : 2011.03.30
  • Accepted : 2011.04.08
  • Published : 2011.06.10

Abstract

A zeolite sheet (ceramic paper containing zeolite) made in a cylindrical configuration can be applied to a honeycomb rotor for the effective VOC removal. In this study, the zeolite sheet containing ZSM-5 was used as a support for Pt-loading, and its catalytic activity for the toluene combustion reaction was compared with those of the other Pt catalysts loaded on ${\gamma}-Al_2O_3$ and cordierite honeycomb. Pt/zeolite sheet catalyst showed a higher activity for toluene combustion reaction than that of $Pt/{\gamma}-Al_2O_3$ or Pt/cordierite honeycomb. On the other hand, the dispersion of Pt particles loaded on the zeolite sheet was improved by the pretreatment with $NH_3-H_2O$ vapor at room temperature. Consequently, the pretreatment of Pt/zeolite sheet by $NH_3-H_2O$ vapor significantly enhanced the catalytic activation for toluene combustion reaction.

원통형으로 성형된 zeolite sheet (제올라이트를 함유하는 세라믹 종이)는 VOC 제거를 위한 효과적인 흡착로터로서 사용될 수 있다. 본 연구에서는 ZSM-5가 함유된 zeolite sheet 지지체에 Pt를 담지한 후 톨루엔 연소 촉매 성능을 ${\gamma}-Al_2O_3$ 및 cordierite honeycomb 지지체에 담지된 Pt 촉매와 비교하였다. Pt/zeolite sheet 촉매는 $Pt/{\gamma}-Al_2O_3$ 또는 Pt/cordierite honeycomb 촉매에 비하여 톨루엔 연소반응에 높은 활성을 나타냈다. 한편, Pt/zeolite sheet 촉매를 상온에서 $NH_3-H_2O$ 증기로 전처리하면 zeolite sheet에 담지된 Pt 입자의 분산도가 향상되었으며, 톨루엔 연소 촉매 활성이 크게 증가하였다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. J. J. Spivey, Ind. Eng. Chem. Res., 26, 2165 (1987). https://doi.org/10.1021/ie00071a001
  2. R. F. Hicks, H. Qi, M. L. Young, and R. G. Lee, J. Catal., 122, 280 (1990). https://doi.org/10.1016/0021-9517(90)90282-O
  3. F. H. Riberio, M. Chow, and R. A. Dalla Betta, J. Catal., 146, 277 (1994). https://doi.org/10.1016/0021-9517(94)90031-0
  4. T. Maillet, C. Solleau, J. Barbier, and D. Duprez, Appl. Catal. B, 14, 85 (1997). https://doi.org/10.1016/S0926-3373(97)00014-3
  5. P. Gelin and M. Primet, Appl. Catal. B, 39, 1 (2002). https://doi.org/10.1016/S0926-3373(02)00076-0
  6. M.-W. Ryoo, S.-G. Chung, J.-H. Kim, Y. S. Song, and G. Seo, Catal. Today, 83, 131 (2003). https://doi.org/10.1016/S0920-5861(03)00223-2
  7. M. N. Padilla-Serrano, F. J. Maldonado-Hodar, and C. Moreno-Castilla, Appl. Catal. B, 61, 253 (2005). https://doi.org/10.1016/j.apcatb.2005.05.008
  8. H. S. Kim, T. W. Kim, H. L. Koh, S. H. Lee, and B. R. Min, Appl. Catal. A, 280, 125 (2005). https://doi.org/10.1016/j.apcata.2004.02.027
  9. M.-C. Kim and S.-H. Ko, J. Korean Ind. Eng. Chem., 18, 552 (2007).
  10. H. L. Tidahy, S. Siffert, J.-F. Lamonier, R. Cousin, E. A. Zhilinskaya, A. Aboukais, B.-L. Su, X. Canet, G. De Weireld, M. Frere, J.-M. Giraudon, and G. Leclercq, Appl. Catal. B, 70, 377 (2007). https://doi.org/10.1016/j.apcatb.2006.02.027
  11. J. M. Padilla, G. Del Angel, and J. Navarrete, Catal. Today, 133-135, 541 (2008). https://doi.org/10.1016/j.cattod.2007.12.053
  12. T. Kuma, J. Chem. Eng. Jpn., 24, 248 (1998).
  13. Y. J. Yoo, C. H. Cho, H. S. Kim, Y. S. Ahn, and G. E. Jang, J. Korean Ind. Eng. Chem., 14, 852 (2003).
  14. T. Inui, M. Suehiro, Y. Saita, T. Miyake, and Y. Takegami, Appl. Catal., 2, 389 (1982). https://doi.org/10.1016/0166-9834(82)80157-7
  15. T. Inui, K. Saigo, Y. Fujii, and K. Fujioka, Catal. Today, 26, 295 (1995). https://doi.org/10.1016/0920-5861(95)00151-9