DOI QR코드

DOI QR Code

Study on the Synthesis of N,N'-Dicyclohexylcarbodiimide from N,N'-Dicyclohexylurea

디사이클로헥실우레아로부터 디사이클로헥실카르보디이미드의 합성에 관한 연구

  • Kim, Jae Young (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Chung, Dae-Won (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 김재영 (수원대학교 공과대학 신소재공학과) ;
  • 정대원 (수원대학교 공과대학 신소재공학과)
  • Received : 2011.03.25
  • Accepted : 2011.04.12
  • Published : 2011.06.10

Abstract

N,N'-Dicyclohexylcarbodiimide (DCC) known as powerful dehydrating reagent in amide or ester synthesis is converted into N,N'-dicyclohexylurea (DCU) during the reaction. In the paper, DCU was recovered from the reaction for the synthesis of the hydrophilic derivative of ${\beta}$-sitosterol, and the purification of the recovered DCU and the dehydration of DCU into DCC were investigated. In the presence of tosyl chloride, (TsCl) and triethylamine (TEA), DCU was converted into DCC, and the optimum molar ratio of [DCU] : [TsCl] : [TEA] was found to be 1.0 : 1.5 : 3.0. Pure DCC was obtained with a 46% yield by the sublimation after the purification process, and characterized by GC/MS, FT-IR and $^{13}C-NMR$.

탈수제로 폭 넓게 사용되는 디사이클로헥실카르보디이미드(DCC)는 반응 후에 디사이클로헥실우레아(DCU)로 변환된다. 본 논문에서는 ${\beta}$-시토스테롤의 수용성 치환체의 합성에 사용되고 부산물로 나오는 DCU를 회수하여 정제한 후에, DCC로 변환시키는 반응을 연구하였다. 토실클로라이드(tosyl chloride, p-tolenesulfonyl chloride, TsCl)와 트리에틸아민(TEA)의 존재 하에서 DCU가 DCC로 변환되는 것을 확인할 수 있었으며, DCU 대비 1.5 당량의 TsCl 및 3.0 당량의 TEA를 사용하였을 때가 최적 반응 조건으로 나타났다. 반응물을 용매를 이용한 정제 과정을 거쳐 최종적으로 승화에 의해서 46%의 수율로 순수한 DCC를 회수할 수 있었다. 합성한 DCC의 화학 구조는 GC/MS, FT-IR 및 $^{13}C-NMR$에 의해서 확인하였다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. M. Bodanszky, Peptide Chemistry: A Practical Textbook, Springer, New York (1988).
  2. S. B. Lee, K. A. Park, and I. K. Hong, J. Korean Ind. Eng. Chem., 10, 438 (1999).
  3. L. A. Paquette, Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons, Chichester (1995).
  4. J. G. Moffatt, J. Org. Chem., 36, 1909 (1971). https://doi.org/10.1021/jo00813a013
  5. C. Ressler and H. Ratzkin, J. Org. Chem., 26, 3356 (1961). https://doi.org/10.1021/jo01067a080
  6. I. Ikeda, K. Tanaka, M. Sugano, G. V. Vahouny, and L. L. Gallo, J. Lipid Res., 70, 5 (1999).
  7. D-w. Chung and Y. T. Choi, J. Korean Ind. Eng. Chem., 17, 375 (2006).
  8. D-w. Chung and Y. T. Choi, J. Ind. Eng. Chem., 13, 367 (2007).
  9. D-w. Chung, W. D. Kim, S. K. Noh, and M. S. Dong, J. Agr. Food Chem., 56, 6665 (2008). https://doi.org/10.1021/jf8004405
  10. W. P. Weber and G. W. Gokel, Tetrahedron Lett., 13, 1637 (1972). https://doi.org/10.1016/S0040-4039(01)84707-9
  11. C. L. Stevens, G. A. Singhal, and A. B. Ash, J. Org. Chem., 32, 2895 (1967). https://doi.org/10.1021/jo01284a056
  12. I. Pri-Bar and J. Schwartz, Chem. Commun., 1997, 347 (1997).
  13. S. Budavari, M. J. O'Neil, A. Smith, and P. E. Heckelman, The Merck Index, Merk & CO., Inc., (1989).
  14. C. J. Pouchert, The Aldrich Library of FT-IR Spectra, Aldrich Chemical Company, Inc., (1985).