DOI QR코드

DOI QR Code

Preparation and Characterization of Polysulfone Membranes Using PVP as an Additive

폴리비닐피롤리돈 첨가제를 이용한 폴리설폰막의 제조 및 특성 분석

  • Lee, Jin Young (Chemical Engineering, Division of Applied Bio-Chemistry, Chungnam National University) ;
  • Lee, Kune Woo (Division of Decommissioning Technology Development, Korea Atomic Energy Research Institute) ;
  • Han, Myeong-Jin (Department of Chemical Engineering, Kyungil University) ;
  • Park, So-Jin (Chemical Engineering, Division of Applied Bio-Chemistry, Chungnam National University)
  • 이진영 (충남대학교 화학공학과) ;
  • 이근우 (한국원자력연구소 제염해체기술연구부) ;
  • 한명진 (경일대학교 화학공학과) ;
  • 박소진 (충남대학교 화학공학과)
  • Received : 2011.03.02
  • Accepted : 2011.03.28
  • Published : 2011.06.10

Abstract

Polysulfone (PSf) membranes were prepared via the phase inversion process. Polyvinylpyrrolidone (PVP) was added as a nonsolvent additive in the casting solution containing a mixture of PSf and n-methylpyrrolidone. The added PVP played a role of enhancing liquid-liquid phase separation of the casting solution, and significantly reduced the solution fluidity. When prepared via the diffusion-induced process using water as a precipitation nonsolvent, the solidified membranes revealed a typical asymmetric structure irrespective of the addition of PVP. With 5 wt% PVP content, the finger-like cavities were more developed in the membrane sublayer compared to that of the membranes prepared without PVP. In contrast, with more than 10 wt% of PVP, the formation of finger-like cavities was suppressed, and the thickness of polymer nodule layer was increased. The surface porosity was also increased with the PSf content in the casting solution. The water permeability curve as a function of PVP addition revealed the inflection point. The maximum water permeability for 12 wt% PSf membrane was obtained with 5 wt% PVP content, and that for 18 wt% PSf membrane with 15 wt% PVP.

상전환법을 이용하여 폴리설폰, n-메틸피롤리돈과 폴리비닐피롤리돈으로 이루어진 제막용액으로부터 고분자 분리막이 제조되었다. 폴리비닐피롤리돈은 폴리설폰에 대한 고분자 첨가제로서 제막용액에 첨가되었으며, 침지용 비용매로는 물이 사용되었다. 첨가된 폴리비닐피롤리돈은 제막용액의 열역학적 상분리를 촉진하는 역할을 할 수 있음을 보였으며, 유동성을 급격히 감소시키는 특성을 보였다. 제조된 막들은 전형적인 비대칭성 구조를 보이며, 첨가제 없는 경우와 비교하였을 때 폴리비닐피롤리돈 함량이 5 wt%가 첨가된 경우 모두 손가락 기공이 약간 더 크게 나타났으며, 10 wt% 이상에서 손가락 기공의 크기가 줄고 표면 고분자 알갱이층의 두께가 뚜렷하게 증가하는 것으로 나타났다. 동일한 폴리비닐피롤리돈 함량에서는 폴리설폰의 함량이 높을수록 손가락 기공의 형성이 시작되는 곳이 표면으로부터 멀리 떨어지는 것으로 나타났다. 표면기공도는 고분자 첨가제를 포함하지 않고 제조된 막의 경우 폴리설폰 함량이 낮을수록 기공도가 크게 나타났다. 폴리설폰 함량이 같을 때 물투과도는 폴리비닐피롤리돈의 함량 증가에 따라 선형으로 변하지 않고 변곡특성을 보였다. 폴리설폰 함량 12 wt%에서 최대 물투과도는 폴리비닐피롤리돈 5 wt%이었을 때 나타났으나, 폴리설폰 함량이 18 wt%이었을 때 최대 투과도는 폴리비닐피롤리돈 함량이 15 wt%일 때 나타났다.

Keywords

Acknowledgement

Grant : 방사능폐기물 처리용 기능성 분리막 제조 및 공정개발

Supported by : 한국연구재단

References

  1. T. Y. Cath, V. D. Adams, and A. E. Childress, J. Membr. Sci., 228, 5 (2004). https://doi.org/10.1016/j.memsci.2003.09.006
  2. B. Durham, M. M. Bourbigot, and T. Pankratz, Desalination, 138, 83 (2001). https://doi.org/10.1016/S0011-9164(01)00248-X
  3. F. Alberti, B. Bienati, A. Bottino, G. Capannelli, A. Comite, F. Ferrari, and R. Firpo, Desalination, 204, 24 (2007). https://doi.org/10.1016/j.desal.2006.05.010
  4. Z. Badani, H. Ait-Amar, A. Si-Salah, M. Brik, and W. Fuchs, Desalination, 185, 411 (2005). https://doi.org/10.1016/j.desal.2005.03.088
  5. A. P. R. Torres, V. M. J. Santiago, and C. P. Borges, Environ. Prog., 27, 189 (2008). https://doi.org/10.1002/ep.10273
  6. T. Gopakumar, Expanded PTFE membrane and method of making, U.S. Patent 2010/0006497 A1 (2010).
  7. S. Loeb and S. Sourirajan, Sea Water Demineralization by Means of a Semipermeable Membrane, UCLA Dept. of Engineering Report No. 60-60, July (1960).
  8. R. E. Kesting, Synthetic Polymeric Membranes: a structural perspective, 2nd edn., Wiley, NewYork, NY (1985).
  9. M. Mulder, Basic Principles of membrane Technologies, 2nd ed., Kluwer Academic Publishers, The Netherlands (1996).
  10. H. Matsuyama, M. M. Kim, and D. R. Lloyd, J. Membr. Sci., 204, 413 (2002). https://doi.org/10.1016/S0376-7388(02)00052-2
  11. W. Yave, R. Quijada, D. R. Lloyd, M. L. Cerrada, R. Benavente, and M. Ulbricht, Macromol. Mater. Eng., 291, 155 (2006). https://doi.org/10.1002/mame.200500309
  12. C. Cohen, G. B. Tanny, and S. Prager, J. Polym. Sci. Polym. Phys., 17, 477-489 (1979). https://doi.org/10.1002/pol.1979.180170312
  13. G. E. Gaids and A. J. McHugh, Polymer, 30, 2118 (1989). https://doi.org/10.1016/0032-3861(89)90303-0
  14. P. Radovanivic, S. W. Thiel, and S. T. Hwang, J. Membr. Sci., 65, 213 (1992). https://doi.org/10.1016/0376-7388(92)87024-R
  15. A. J. Reuvers, F. W. Altena, and C. A. Smolders, J. Polym. Sci. Polym. Phys., 24, 793 (1986). https://doi.org/10.1002/polb.1986.090240406
  16. J. G. Wijmans, J. Knat, H. H. V. Mulder, and C. A. Smolders, Polymer, 26, 1539 (1985). https://doi.org/10.1016/0032-3861(85)90090-4
  17. I. M. Wienk, R. M. Boom, M. A. M. Beerlage, A. M. W. Bulte, C. A. Smolders, and H. Strathmann, J. Membr. Sci., 113, 361 (1996). https://doi.org/10.1016/0376-7388(95)00256-1
  18. R. M. Boom, T. Boomgaard, and C. A. Smolders, Macromolecules, 27, 2034 (1994). https://doi.org/10.1021/ma00086a009
  19. M. J. Han and S. T. Nam, J. Membr. Sci., 202, 55 (2002). https://doi.org/10.1016/S0376-7388(01)00718-9
  20. A. J. Reuvers, J. W. A. van den Berg, and C. A. Smolders, J. Membr. Sci., 34, 45 (1987). https://doi.org/10.1016/S0376-7388(00)80020-4
  21. S. H. Chen, R. M. Liou, J. Y. Lai, and C. L. Lai, Eur. Polym. J., 43, 3997 (2007). https://doi.org/10.1016/j.eurpolymj.2007.06.013
  22. A. Yamasaki, R. K. Tyagi, A. E. Fouda, T. Matsuura, and K. Jonasson, J. Membr. Sci., 123, 89 (1997). https://doi.org/10.1016/S0376-7388(96)00204-9
  23. M. J. Han, Desalination, 121, 31 (1999). https://doi.org/10.1016/S0011-9164(99)00005-3
  24. A. F. Ismail, I. R. Dunkin, S. L. Gallivan, and S. J. Shilton, Polymer, 40, 6499 (1999). https://doi.org/10.1016/S0032-3861(98)00862-3
  25. Y. Liu, G. H. Koops, and H. Strathmann, J. Membr. Sci., 223, 187 (2003). https://doi.org/10.1016/S0376-7388(03)00322-3
  26. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci., 315, 36 (2008). https://doi.org/10.1016/j.memsci.2008.02.027
  27. A. F. Ismail and A. R. Hassan, Sep. Sci. Technol., 55, 98 (2007).
  28. I. M. Wienk, F. H. A. Olde Scholtenhuis, T. Boomgaard, and C. A. Smolders, J. Membr. Sci., 106, 233 (1995). https://doi.org/10.1016/0376-7388(95)00088-T
  29. P. S. T. Machado, A. C. Habert, and C. P. Borges, J. Membr. Sci., 155, 171 (1999). https://doi.org/10.1016/S0376-7388(98)00266-X
  30. K. Kamis, M. Dailey, M. Kuznitz, K. L. Rutherford, and R. G. Riley, Dual-phased styling product that provides styling and conditioning benefits, U.S. Patent 6,656,457 (2003).
  31. S.-W. Kuo, S.-C. Chan, and F.-C. Chang, Polymer, 43, 3653 (2002). https://doi.org/10.1016/S0032-3861(02)00167-2
  32. B. NAIR, Int. J. Toxicol., 17, 95 (1998). https://doi.org/10.1177/109158189801700408
  33. M. J. Ballard, R. Buscall, and F. A. Waite, Polymer, 29, 1287 (1988). https://doi.org/10.1016/0032-3861(88)90058-4
  34. Hess and S. Hess, Physica A, 207, 517 (1994). https://doi.org/10.1016/0378-4371(94)90208-9
  35. V. Buhler, Kollidon Polyvinylpyrrolidone for the pharmaceutical industry, BASF, Ludwigshafen (1998).
  36. M. Oechsner and S. Keipert, Eur. J. Pharm. Biopharm., 47, 1113 (1999).
  37. N. Bolong, A. F. Ismail, M. R. Salim, D. Rana, and T. Matsuura, J. Membr. Sci., 331, 40 (2009). https://doi.org/10.1016/j.memsci.2009.01.008
  38. W. R. Clark, R. J. Hamburger, and M. J. Lysaght, Kidney International, 56, 2005 (1999). https://doi.org/10.1046/j.1523-1755.1999.00784.x
  39. C. Reichardt, Solvents and solvent effects in organic chemistry, Wiley-VCH Verlag GmbH & Co., Weinheim (2003).
  40. Polymeric materials encyclopedia, Joseph C. Salamone, ed., CRC Press, NewYork (1996).
  41. A. Cutrignelli, A. Lopedota, A. Trapani, G. Boghetich, M. Franco, N. Denora, V. Laquintana, and G. Trapani, Int. J. Pharm., 358, 60 (2008). https://doi.org/10.1016/j.ijpharm.2008.02.018