DOI QR코드

DOI QR Code

Electrochemical Technologies : Water Treatment

전기화학공학 기술 : 수처리 공정

  • Lee, Jaeyoung (Ertl center for Electrochemistry and Catalysis, School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jae Kwang (Ertl center for Electrochemistry and Catalysis, School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Uhm, Sunghyun (Ertl center for Electrochemistry and Catalysis, School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 이재영 (광주과학기술원 Ertl 촉매연구센터, 환경공학부) ;
  • 이재광 (광주과학기술원 Ertl 촉매연구센터, 환경공학부) ;
  • 엄성현 (광주과학기술원 Ertl 촉매연구센터, 환경공학부) ;
  • 이혜진 (경북대학교 화학과)
  • Received : 2011.05.24
  • Published : 2011.06.10

Abstract

This perspective describes recent advances made in the development of various electrochemical technologies to treat waste water containing organic pollutants, reducible/oxidizable and non-reducible/non-oxidizable anions and cations using redox reactions on the solid surface as well as at the interface between solid electrode and liquid electrolyte. Some of representative multiplexing and hybrid electrochemical treatment technologies are discussed, which have great advantages of high efficiency, stability and cost-effective instrumentation without the need of considering non-specific conditions such as high-temperature and high-pressure; however, choices and usages of electrode materials are absolutely critical issues.

본 총설은 전극표면과 수용액 사이의 계면에서의 산화 및 환원반응을 이용하여 수용액 내 존재하는 유해한 유기화합물, 중금속 이온 등을 처리 가능한 최근의 전기화학기술에 대해서 정리 요약한 것이다. 수처리에 사용 가능한 전기화학기술은 일반적으로 고온, 고압을 요구하지 않으므로 비용면과 안정성면에서 장점을 지니고 있으며, 또한 높은 시스템 효율로서 다양한 성분을 포함한 폐수를 동시에 처리 가능하다는 것을 소개하고자 한다. 무엇보다 중요한 것은 전극소재의 선택과 사용이다.

Keywords

Acknowledgement

Supported by : Ministry of Knowledge Economy

References

  1. K. Rajeshwar and J. G. Ibanez, Environmental Electrochemistry, Academic Press, London (1997).
  2. D. Pletcher and F. C. Walsh, Industrial Electrochemistry, 2nd edition, Kluwer, London (1990).
  3. W. Vielstich, Fuel Cells, Wiley-Interscience, London (1965).
  4. C. Comninellis, Electrochim. Acta, 39, 1857 (1994). https://doi.org/10.1016/0013-4686(94)85175-1
  5. H. Shaifan and D. W. Kirk, J. Electrochem. Soc., 113, 921 (1986).
  6. C. Comminellis, B. Correa-Lozano, and De Battisiti, J. Appl. Electrochem., 26, 689 (1996).
  7. A. M. Polcaro, S. Palmas, F. Renoldi, and M. Mascia, J. Appl. Electrochem., 29, 147 (1999). https://doi.org/10.1023/A:1003411906212
  8. S. Zor, B. Yazic, M. Erbil, and H. Galip, Water Res., 32, 579 (1998). https://doi.org/10.1016/S0043-1354(97)00305-9
  9. M. Panizza, C. Bocca, and G. Cerisola, Water Res., 34, 2601 (2000). https://doi.org/10.1016/S0043-1354(00)00145-7
  10. C. Comininellis and C. Pulgarin, J. Appl. Electrochem., 23, 108 (1993).
  11. K. Kim, M. Kuppuswamy, and R. F. Savinell, J. Appl. Electrochem., 30, 543 (2000). https://doi.org/10.1023/A:1003822131632
  12. Patent : DE 195 12 955 A1 (1996).
  13. U. S. Patent 5,547,581 (1996).
  14. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, J. Electrochem. Soc., 143, 159 (1996). https://doi.org/10.1149/1.1836402
  15. S.-J. Seo, H. Jeon, J. K. Lee, G.-Y. Kim, D. Park, H. Nojima, J. Lee, and S.-H. Moon, Water Res., 44, 2267 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  16. J. M. Lee, H. K. Ju, J. K. Lee, H. S. Kim, and J. Lee, Electrochem. Commun., 12, 210 (2010). https://doi.org/10.1016/j.elecom.2009.11.026
  17. R. L Machunda, H. Jeon, J. K. Lee, and J. Lee, Water Sci. Tech., 9, 159 (2009). https://doi.org/10.2166/ws.2009.252
  18. A. Lehmani, P. Turq, and J. P. Simonin, J. Electrochem. Soc., 143, 1860 (1996). https://doi.org/10.1149/1.1836915
  19. A. C. Almon and B. R. Buchanan, Electrolytic Destruction of Spent Tributylphosphate Extractant using Silver Catalyzed Electrochemical Oxidation, WSRC-RP-90-123, Savannah River Site, Aiken, SC (1990).
  20. R. D. Letterman, A. Amirtharajah, and C. R. O'Melia, Coagulation and Flocculation in Water Quality and Treatment, ed. R. D. Letterman, A Handbook of Community Water Supplies, Fifth, AWWA, McGraw-Hill, New York (1999).
  21. S. Koparai and U. B. Ogutveren, J. Hazard. Mater., 89, 83 (2002). https://doi.org/10.1016/S0304-3894(01)00301-6
  22. M. A. Oturan, N. Oturan, C. Lahitte, and S. Trevin, J. Electroanal. Chem., 507, 96 (2001). https://doi.org/10.1016/S0022-0728(01)00369-2
  23. M. Panizza and G. Cerisola, Water Res., 35, 3987, (2001). https://doi.org/10.1016/S0043-1354(01)00135-X
  24. I. Troster, M. Fryda, D. Herrmann, L. Schafer, W. Hanni, A. Perret, M. Blaschke, A. Kraft, and M. Stadelmann, Diam. Relat. Mat., 11, 640 (2002). https://doi.org/10.1016/S0925-9635(01)00706-3
  25. V. Diaz, R. Ibanez, P. Gomez, A. M. Urtiaga, and I. Ortiz, Water Res., 45, 125 (2011). https://doi.org/10.1016/j.watres.2010.08.020
  26. V. Schmalz, T. Dittmar, D. Haaken, and E. Worch, Water Res., 43, 5260 (2009). https://doi.org/10.1016/j.watres.2009.08.036
  27. T. Ochiai, Y. Iizuka, K. Nakata, T. Murakami, D. A. Tryk, A. Fujishima, Y. Koide, and Y. Morito, Diam. Relat. Mat., 20, 64 (2011). https://doi.org/10.1016/j.diamond.2010.12.008
  28. X. Zhu, J. Ni, and P. Lai, Water Res., 43, 4347 (2009). https://doi.org/10.1016/j.watres.2009.06.030
  29. S. Garcia-Segura and E. Brillas, Water Res., 45, 2975 (2011). https://doi.org/10.1016/j.watres.2011.03.017
  30. J. K. Lee and J. Lee, Unpublished Data (2011).
  31. P. Drogui, S. Elmaleh, M. Rumeau, C. Bernard, and A. Rambaud, J. Membr. Sci., 186, 123 (2001). https://doi.org/10.1016/S0376-7388(00)00662-1