DOI QR코드

DOI QR Code

Particle Dissolution Effects on Soluble Geo-Mixtures

용해성 지반혼합재의 입자 용해 영향

  • 짠밍콰 (고려대학교 건축사회환경공학부) ;
  • 조세현 (고려대학교 건축사회환경공학부) ;
  • 변용훈 (고려대학교 건축사회환경공학부) ;
  • 신호성 (울산대학교 건설환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2011.05.05
  • Accepted : 2011.10.14
  • Published : 2011.12.01

Abstract

Macro- and micro-behaviors of soluble granular media during dissolution process is investigated by numerical analysis. Soluble media are represented by assemblies of non-soluble particles and soluble particles with the different soluble particles contents. Dissolutions of particles are implemented by reducing sizes of soluble particles. The numerical simulations results exhibit that the vertical displacements increase to certain times and become constant while the porosities still increase until no soluble particles are present. However, the porosities and vertical displacements increase with the increase of soluble particles content. The microscopic views show that the fabrics of media change during dissolution process until the certain times, the higher soluble particles contents, and the larger change in fabric.

본 연구에서는 용해성 입자를 포함한 혼합재가 용해과정에서 발생하는 입자구조의 미시적 및 거시적 거동을 수치해석기법을 이용하여 조사하였다. 혼합재는 다양한 부피비의 용해성 입자와 비용해성 입자를 혼합하여 조성하였다. 용해성 입자의 용해과정은 입자의 크기를 감소시킴으로써 모사하였다. 수치해석 결과 일정한 시간까지 시료의 수직변형은 진행되며, 수직변형이 평형에 도달한 후에도 용해작용이 진행되어 간극률은 변화한다. 또한, 간극률과 수직변형은 용해성 입자의 함유량이 증가함에 따라 증가한다. 본 연구에서는 수치해석을 통하여 용해성 입자를 포함한 시료의 용해과정에서 입자구조의 변화는 특정 시간까지 진행되며, 용해성 입자의 부피가 클수록 구조 변화가 큰 결론을 얻었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Azam, S. (2000), Collapse and Compressibility Behaviour of Arid Calcureous Soil Formations, B. Eng. Geol. Environ, Vol. 59, No. 3, pp. 211-217. https://doi.org/10.1007/s100640000060
  2. Bathurst, R. J., and Rothenburg, L. (1990). Observations on Stress-force-fabric Relationships in Idealized Granular Materials, Mechanics of Materials, Vol. 9, pp. 65-80. https://doi.org/10.1016/0167-6636(90)90030-J
  3. Cook, B. K., and Jensen, R. P. (2002), Discrete Element Methods: Numerical Modeling of Discontinua, Geotechnical Special Publication, No. 117, ASCE, pp. 1-427.
  4. Craft Doug (2005), Seepage chemistry manual, US Department of the Interior, Buureau of Reclamation, Dam Safety Technology Development Program, Denver, Colorado, pp. 1-166
  5. Cundall, P. A., and Strack, O. D. L. (1979), A Discrete Numerical Model for Granular Assemblies, Geotechnique, Vol. 29, No. 1, pp. 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  6. Fam, M. A., Cascante, G., and Dusseault, M. B. (2002), Large and Small Strain Properties of Sands Subjected to Local Void Increase, Journal of Geotechnical and Geoenvironmental Engineering, Vol, 128, No. 12, pp. 1018-1025. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(1018)
  7. Mikheev, V. V., and Petrukhin, V. P. (1973), Construction Properties of Saline Soils used as Foundation Beds in Industrial and Civil Construction, Construction under Special Soil Conditions, Consultants Bureau, A Division of Plenum Publishing Coorporation, 227 West 17th Street, New York, pp. 30-36.
  8. O'Sullivan, C., Bray, J.D., and Riemer, M.(2004), Examination of the Response of the Regularly Packed Specimens of Spherical Particles Using Physical Tests and Discrete Element Simulation, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 10, pp. 1140-1150. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:11(1140)
  9. PFC2D (1998), User's manual, Itasca Consulting Group, Inc, pp. 1-1425.
  10. Rothenburg, L. (1980), Micromechanics of Idealized Granular System, Ph.D. Dissertation, Carleton University, Ottawa, Ontario, Canada.
  11. Rothenburg, L., and Bathurst, R. J. (1989), Analytical Study of Induced Anisotropy in Idealized Granular Materials, Geotechnique, Vol. 39, No. 4, pp. 601-614. https://doi.org/10.1680/geot.1989.39.4.601
  12. Shimizu, Y., Hart, R., and Cundall, P. (2004), Numerical Modeling in Micromechanics via Particle Methods, The 2nd International PFC Symposium, Kyoto, Japan, pp. 1-435.
  13. Shin, H., and Santamarina, J. C. (2009), Mineral Dissolution and the Evolution of k0, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 135, No. 8, pp. 1141-1147. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000053
  14. Ting, J. M., Corkum, B. T., Kauffman, C. R., and Greco, C. (1989), Discrete Numerical Model for Soil Mechanics, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 115, No. 3, pp. 379-398. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(379)
  15. Truong, Q. H., Eom, Y. H., and Lee, J. S. (2010), Stiffness Characteristics of Soluble Mixtures, Geotechnique, Vol. 60, No. 4, pp. 293-297. https://doi.org/10.1680/geot.8.T.032
  16. Yimsiri, S., and Soga, K. (2010), DEM Analysis of Soil Fabric Effects on Behavior of Sand, Geotechnique, Vol. 60, No. 6, pp. 483-495. https://doi.org/10.1680/geot.2010.60.6.483