Review on Potential Risk Factors in Wafer Fabrication Process of Semiconductor Industry

반도체 웨이퍼 가공 공정 및 잠재적 유해인자에 대한 고찰

  • Published : 2011.09.30

Abstract

Objectives: To associate work in the semiconductor industry, including silicon wafer fabrication, with cancer risks or mortality and other adverse health effects, the operation of wafer fabrication should initially be understood. A detailed study on the fabrication operation allows retrospective exposure to be assessed and wafer fabrication workers to be classified into similar exposure groups. Therefore, the objective of this study was to comprehensively review silicon wafer fabrication operations and related hazardous materials and agents. Methods: The literatures related to semiconductor industry processes were reviewed from an occupational health viewpoint based on wafer manufacturing, wafer fabrication and packaging. The focus was especially related to the hazardous materials used in wafer fabrication industries. Results: During the fabrication of silicon wafers, many toxic chemicals, a strong electric field and hazardous equipment are used. The process allows the integration of a three-dimensional array of electric circuits onto a silicon wafer substrate. Wafers are sliced from single crystal silicon and subject to a series of steps during the fabrication process, which alternatively adds and then selectively removes materials in layers from the surface of the wafer to create different parts of the completed integrated circuit. There are four major steps in this process; patterning, junction formation, thin film and metallization. Conclusions: In order to associate exposure to the hazard agents generated during wafer fabrication operations with adverse health effects the details of the operation should be completely studied, which will be helpful in both exposure assessments and epidemiological studies.

목적: 최근 반도체 근로자의 암 등 만성적인 건강장해가 사회문제화되고 있으나 이들이 일했던 공정과 노출될 수 있었던 유해인자에 대한 보고가 없었다. 따라서 반도체 산업 중 웨이퍼 가공 공정을 대상으로 공정 원리, 각 공정에서 사용하거나 발생될 수 있는 화학물질과 주요 유해인자를 정리하였다. 방법: 산업보건학적인 측면에서 웨이퍼 가공 공정을 설명한 문헌과 논문을 정리하였다. 반도체 산업을 크게 웨이퍼 제조, 웨이퍼 가공(fab 공정), 칩 조립(패키징)으로 구분하여 각각 공정에 대해 간단히 기술하였고, 이 중 특히 화학물질을 많이 사용하는 웨이퍼 가공 공정에 대한 설명과 노출될 수 있는 유해인자를 고찰하였다. 결과: 웨이퍼 가공 공정은 웨이퍼 산화(oxidation)${\rightarrow}$감광액 도포(photoresist application)${\rightarrow}$노광(photo exposure)${\rightarrow}$현상(developing)${\rightarrow}$식각(etching)${\rightarrow}$스트리핑(stripping)${\rightarrow}$이온주입(ion implantation)${\rightarrow}$박막증착(thin film)${\rightarrow}$금속증착(metallization) 등으로 이루어져 있다. 대부분의 공정에서 근로자의 건강에 장해를 줄 수 있는 화학물질을 사용하거나 물리적 유해인자를 유발하는 장치를 사용한다. 특히 웨이퍼 가공 공정별로 화학물질 교체, 장비 기계 교환 및 정비를 담당하는 정비 작업자의 유해인자 노출은 위험한 수준인 것으로 알려져 있다. 공정 특성상 웨이퍼 가공은 수많은 유해화학물질을 사용해야 하므로 화학물질에 대한 노출가능성은 일반적이다. 또한 일부 공정에서는 자외선(포토), 라디오파(플라스마 식각, 금속증착 등), 엑스레이(이온주입) 등의 물리적 유해인자도 발생되므로 이에 대한 노출위험도 존재한다. 결론: 웨이퍼 가공 공정 근로자에게서 보고된 건강장해가 직무와 연관이 있는지 규명하기 위해서는 무엇보다 공정을 명확하게 이해하고 고찰해야 한다.

Keywords

References

  1. SisaIN 173. pp 39. 2011. Available: 산재보상법, 47년간 '제자리걸음' http://www.sisainlive.com/news/articleView.html?idxno=9224 [cited 1 February 2011].
  2. LaDou J, Bailar JC. Cancer and reproductive risks in the semiconductor industry. Int J Occup Environ Health 2007;13:376-85.
  3. Vagero D, Olin R. Incidence of cancer in th electronics industry: using the new Swedish cancer environment registry as a screening instrument. Br J Ind Med 1983;40:188-92.
  4. Elliott RC, Jones JR, McElvenny DM, Pennington MJ, Northage C, Clegg TA, Clarke SD, Hodgson JT, Osman J. Spontaneous abortion in the British semiconductor industry: An HSE investigation. Am J Ind Med 1999;36:557-72. https://doi.org/10.1002/(SICI)1097-0274(199911)36:5<557::AID-AJIM8>3.0.CO;2-Q
  5. Correa A, Gray RH, Cohen R, Rothman N, Shah F, Seacat H, Corn M. Ethylene glycol ethers and risks of spontaneous abortion and subfertility. Am J Epidemiol 1996;143:707-17. https://doi.org/10.1093/oxfordjournals.aje.a008804
  6. Wald PH, Jones JR. Semiconductor manufacturing: an introduction to processes and hazards. Am J Ind Med 1987;11:203-21. https://doi.org/10.1002/ajim.4700110209
  7. Stewart J EK. Electronics: Semiconductor manufacturing. Industrial hygiene aspects of plant operations. John Wiley and Sons Ltd. New York. 1985. pp 439-63.
  8. Chelton CF, Glowatz M, Mosovsky JA. Chemical hazards in the semiconductor industry. Ieee T Educ 1991;34:269-88. https://doi.org/10.1109/13.85086
  9. Baldwin DG, King BW, Scarpace LP. Ion Implanters - Chemical and radiation safety. Solid State Technol 1988;31:99-105. https://doi.org/10.1016/0038-1101(88)90091-3
  10. Cox J RD. LSI semiconductor manufacturing. John Wiley and Sons. Ltd. New York 1984. pp 442-88.
  11. Hawkinson TE KD. Chemical hazards in semiconductor operations. Semiconductor safety handbook: safety and health in the semiconductor industry. William Andrew Publishing/Noyes New York. 1998. pp 163-79.
  12. Harrison M. Semiconductor manufacturing hazards, Clinical Principles of environmental health. Williams and Wilkins. Baltimore, Maryland. 1992. pp 472-504.
  13. Herrick RF, Stewart JH, Blicharz D, Beall C, Bender T, Cheng H, Matthews R, Sathiakumar N, Delzell E. Exposure assessment for retrospective follow-up studies of semiconductor- and storage device-manufacturing workers. J Occup Environ Med 2005;47:983-95. https://doi.org/10.1097/01.jom.0000177128.50822.01
  14. Ungers LJ, Jones JH. Industrial hygiene and control technology assessment of ion implantation operation. Am Ind Hyg Assoc J 1986;47:607-14. https://doi.org/10.1080/15298668691390322
  15. Chou WC, Chio CP, Liao CM. Assessing airborne PM-bound arsenic exposure risk in semiconductor manufacturing facilities. J Hazard Mater 2009;167:976-86. https://doi.org/10.1016/j.jhazmat.2009.01.079
  16. Park D, Yang H, Jeong J, Ha K, Choi S, Kim C, Yoon C, Park D, Paek D. A comprehensive review of arsenic levels in the semiconductor manufacturing industry. Ann Occup Hyg 2010; 54:1-11. https://doi.org/10.1093/annhyg/mep085