Lung Function in Workers at Small Foundries

소규모 주물공장 근로자의 폐기능

  • Kim, Se-Yeong (Department of Occupational & Environmental Medicine, College of Medicine, Dong-A University) ;
  • Kim, Jung-Il (Department of Occupational & Environmental Medicine, College of Medicine, Dong-A University) ;
  • Jung, Ji-Hyeon (Department of Occupational & Environmental Medicine, College of Medicine, Dong-A University) ;
  • Choi, Suk-Hwan (Department of Occupational & Environmental Medicine, College of Medicine, Dong-A University) ;
  • Jung, Kap-Yeol (Department of Occupational & Environmental Medicine, College of Medicine, Dong-A University)
  • 김세영 (동아대학교 의과대학 산업의학교실) ;
  • 김정일 (동아대학교 의과대학 산업의학교실) ;
  • 정지현 (동아대학교 의과대학 산업의학교실) ;
  • 최석환 (동아대학교 의과대학 산업의학교실) ;
  • 정갑열 (동아대학교 의과대학 산업의학교실)
  • Published : 2011.09.30

Abstract

Objectives: This study investigated lung function in workers exposed to dusts, fumes and noxious gases at small foundries. Methods: Lung function was measured in 148 male workers from 12 small foundries and 202 unexposed male workers. Pulmonary function tests performed included: forced vital capacity (FVC), forced expiratory volume in one second (FEV1), percent of FEV1/FVC (FEV1/FVC%), maximum mid-expiratory flow (MMEF), peak expiratory flow (PEF), and forced expiratory flow at 25, 50, and 75% of expired FVC (FEF25, 50, 75) Results: Mean values of all ventilatory indices except FEF25 of foundry workers were significantly lower than those of controls. Specifically, following stratification by smoking habits, all ventilatory indices except FEF25 of foundry workers were significantly lower than those of controls who smoked; however, there were no significant differences observed in any ventilatory indices between nonsmoking exposed workers and controls. The results of multiple linear regression analysis indicated work duration as a significant predictor of a decrease in FVC%. Conclusions: This research indicates that combined occupational exposure to dust, fumes, and gases in small foundries is associated with a reduction in lung function. Smoking may also contribute to respiratory abnormalities. These results suggested that foundry workers should be required to undergo periodic lung function tests and-in addition to not smoking, efficient use of personal protection equipment while at work is recommended.

목적: 분진과 흄, 각종 유해가스에 동시 폭로되는 50인 미만의 소규모 주물공장 근로자들의 폐기능을 평가하였다. 방법: 연구대상자는 상시 5인 이상 50인 미만의 부산지역 12개 소규모 주물작업장에 근무하고 있는 남자 근로자 148명을 노출군으로, 분진 및 유해가스 등에 직업적으로 노출되지 않은 비주물근로자 202명을 비교군으로 하였다. 폐기능 지표로 FVC, $FEV_{1},\;FEV_{1}$/FVC %, PEF, MMEF와 호기 FVC의 25%, 50% 및 75%시점에서의 최대호기기류인 $FEF^{25},\;FEF_{50}$$FEF_{75}$를 측정하여 주물작업 노출군과 비교군을 비교분석하였다. 결과: 주물작업 노출군이 비교군에 비해 $FEF^{25}$를 제외한 모든 폐기능 측정치가 유의하게 감소하였다. 대상자를 흡연유무로 나누었을 때 흡연군에서 $FEF_{25}$를 제외한 모든 측정치가 노출군이 비교군에 비해 유의하게 낮았지만 비흡연군에서는 모든 폐기능 지표의 유의한 차이가 없었다. 비교군에서 FVC%, $FEV_1$%를 종속변수로 다중회귀 분석을 시행하였을 때 근무년수가 증가함에 따라 FVC% 가 감소하였다. 결론: 소규모 주물공장 근로자는 작업 중 발생하는 분진, 흄, 가스 등의 복합노출로 폐기능이 저하되며, 흡연의 효과가 부가적으로 영향을 미친다고 생각한다. 따라서 폐기능이 저하된 주물공장 근로자에서 주기적인 폐기능 검사가 실시되어야 하며 금연과 효과적인 호흡기 보호구의 착용이 권장된다.

Keywords

References

  1. Oxman AD, Muir DC, Shannon HS, Stock SR, Hnizdo E, Lange HJ. Occupational exposure and chronic obstructive pulmonary diseases: a systemic overview of the evidence. Am Rev Respir Dis 1993;148(1):38-48. https://doi.org/10.1164/ajrccm/148.1.38
  2. Cohen RA, Patel A, Green FH. Lung disease caused by exposure to coal mine and silica dust. Semin Respir Crit Care Med 2008;29(6):651-61.
  3. Wilson D, Takahashi K, Pan G, Chan CC, Zhang S, Feng Y, Hoshuyama T, Chuang KJ, Lin RT, Hwang JS. Respiratory symptoms among residents of a heavyindustry province in china: prevalence and risk factors. Respir Med 2008;102(11):1536-44. https://doi.org/10.1016/j.rmed.2008.06.010
  4. Takaro TK. Manufacturing Sector. In: Rosenstock L(eds) Textbook of Clinical Occupational and Environmental Medicine. 4th ed. Elsevier Inc. Pub. Philadelphia. 2005. pp 239.
  5. Koo JW, Kim KA, Chung CK. The effect of silica dust on ventilatory function in foundry workers. Korean J Occup Med 1998;10(1):94-104. (Korean)
  6. Wang ML, McCabe L, Hankison JL, Shamssain MH, Gunel E, Lapp NL, Banks DE. Longitudinal and crosssectional analyses of lung function in steelworkers. Am J Respir Crit Care Med 1996;153:1907-13. https://doi.org/10.1164/ajrccm.153.6.8665054
  7. Lofstedt H, Westberg H, Selden AI, Rudblad S, Bryngelsson IL, Ngo Y, Svartengren M. Nasal and ocular effects in foundry workers using the hot box method. J Occup Environ Med 2011;53(1):43-8. https://doi.org/10.1097/JOM.0b013e318181ff05cc
  8. Lofstedt H, Westberg H, Selden AI, Lundholm C, Svartengren M. Respiratory symptoms and lung function in foundry workers exposed to low molecular weight isocyanates. Am J Ind Med 2009;52(6):455-63. https://doi.org/10.1002/ajim.20693
  9. Jalloul AS, Banks DE. The Health Effects of Silica Exposure. In: Rom WN(eds) Environmental and Occupational Medicine. 4th ed. Lippincott Williams & Wilkins Philadelphia. 2007. pp 365-87.
  10. Karava R, Hernberg S, Koskela RS. Luoma K. Prevalence of pneumoconiosis in chronic bronchitis in foundry workers. Scand J Work Environ Health 1976;2 supple 1:64-72.
  11. Zhang M, Zheng YD, Du XY, Lu Y, Li WJ, Qi C, Wu ZL. Silicosis in automobile foundry workers: a 29-year cohort study. Biomed Environ Sci 2010;23(2):121-9. https://doi.org/10.1016/S0895-3988(10)60041-4
  12. Low I, Mitchell C. Respiratory disease in foundry workers. Br J Ind Med 1985;42(2): 101-5.
  13. Cockcroft DW, Cartier A, Jones G, Tarlo SM, Dolovich J, Hargreave FE. Asthma caused by occupational exposure to a furan-based binder system. J Allergy Clin Immunol 1980;66(6)458-63. https://doi.org/10.1016/0091-6749(80)90006-8
  14. Zammit-Tabona M, Sherkin M, Kijek K, Chan H, Chan-Yeung M. Asthma caused by diphenylmethane diisocyanate in foundry workers. Clinical, bronchial provocation, and immunologic studies. Am Rev Respir Dis 1983;128(2):226-30.
  15. Malo JL, Zeiss CR. Occupational hypersensitivity pneumonitis after exposure to diphenylmethane diisocyanate. Am Rev Respir Dis 1982;125(1):113-6.
  16. Nemery B, Van Leemputten R, Goemaere E, Veriter C, Brasseur L. Lung function measurements over 21 days shiftwork in steelworkers from a strandcasting department. Br J Ind Med 1985;42(9):601-11.
  17. Xu X, Christiani DC, Dockery DW, Wang L. Exposureresponse relationship between occupational exposures and chronic respiratory illness: a community based study. Am Rev Respir Dis 1992;146(2):413-18. https://doi.org/10.1164/ajrccm/146.2.413
  18. Gomes J, Lloyd OL, Norman NJ, Pahwa P. Dust exposure and impairment of lung function at a small iron foundry in a rapidly developing country. Occup Environ Med 2001;58(10):656-62. https://doi.org/10.1136/oem.58.10.656
  19. Lofstedt H, Westberg H, Selden AI, Lundholm C, Svartengren M. Respiratory symptoms and lung function in foundry workers exposed to low molecular weight isocyanates. Am J Ind Med 2009;52(6):455-63. https://doi.org/10.1002/ajim.20693
  20. Choi JK, Rhee CO, Paek DM, Choi BS, Shin YC, Chung HK. Respiratory health of foundry workers exposed to binding resin. Korean J Prev Med 1994;27(2):274-85. (Korean)
  21. YI IS. Report of The Census on Establishments (2009). Statistics Korea. Daejeon. 2010. pp 38-81. (Korean)
  22. Standardization of spirometry, 1994 update. American Thoracic Society. Am J Respir Crit Care Med 1995;152(3):1107-36. https://doi.org/10.1164/ajrccm.152.3.7663792
  23. Occupational Safety & Health Research Institute. Pneumoconiosis Quality Control : Pulmonary Function Test (Translated by Kim SY). Korean Occupational Safety Health Agency, Occupational Safety & Health Research Institute. Incheon. 2010. pp 119-33. (Korean)
  24. Knudson RJ, Slatin RC, Lebowitz MD, Burrows B. The maximal expiratory flow-volume curve. normal standards, variability, and effects of age. Am Rev Respir Dis 1976;113(5):587-600.
  25. Kuo HW, Chang CL, Liang WM, Chung BC. Respiratory abnormalities among male foundry workers in central Taiwan. Occup Med 1999;49(8):499-505. https://doi.org/10.1093/occmed/49.8.499
  26. Zuskin E, Mustajbegovic J, Schachter EN, Kern J, Doko-Jelinic J, Godnic-Cvar J. Respiratory findings in workers employed in the brick-manufacturing industry. J Occup Environ Med 1998;40(9):814-20. https://doi.org/10.1097/00043764-199809000-00011
  27. Neghab M, Choobineh A. Work-related respiratory symptoms and ventilatory disorders among employees of a cement industry in Shiraz, Iran. J Occup Health 2007;49(4):273-8. https://doi.org/10.1539/joh.49.273
  28. Mwaiselage J, Bratveit M, Moen B, Mashalla Y. Cement dust exposure and ventilatory function impairment: an exposure-response study. J Occup Environ Med 2004;46(7):658-67. https://doi.org/10.1097/01.jom.0000131787.02250.79
  29. Hnizdo E, Vallyathan V. Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence. Occup Environ Med 2003;60(4):237-43. https://doi.org/10.1136/oem.60.4.237
  30. Lee PN, Fry JS. Systematic review of evidence relating FEV1 decline to giving up smoking. BMC Med 2010;8:84. https://doi.org/10.1186/1741-7015-8-84
  31. Tager IB, Segal MR, Speizer FE, Weiss ST. The natural history of forced expiratory volumes. Effect of cigarette smoking and respiratory symptoms. Am Rev Respir Dis 1988;138(4):837-49. https://doi.org/10.1164/ajrccm/138.4.837
  32. Ross MH, Murray J. Occupational respiratory disease in mining. Occup Med 2004;54(5):304-10. https://doi.org/10.1093/occmed/kqh073
  33. Hnizdo E, Baskind E, Sluis-Cremer GK. Combined effect of silica dust exposure and tobacco smoking on the prevalence of respiratory impairments among gold miners. Scand J Work Environ Health 1990;16(6):411-22. https://doi.org/10.5271/sjweh.1768
  34. Marine WM, Gurr D, Jacobsen M. Clinically important respiratory effects of dust exposure and smoking in British coal miners. Am Rev Respir Dis 1988; 137(1):106-12. https://doi.org/10.1164/ajrccm/137.1.106
  35. Myers JE, Garisch D, Myers HS, Cornell JE. A respiratory epidemiological survey of workers in a small South African foundry. Am J Ind Med 1987;12(1):1-9. https://doi.org/10.1002/ajim.4700120102