DOI QR코드

DOI QR Code

분무 열분해법을 이용해 제조된 VOx/Mesoporous Titania 상에서 1,2-dichlorobenzene의 분해반응에 대한 in situ FT-IR 연구

In situ FT-IR Study of 1,2-dichlorobenzene Decomposition over VOx/Mesoporous Titania by Prepared Spray Pyrolysis

  • 전종기 (공주대학교 화학공학부) ;
  • 정경열 (공주대학교 화학공학부) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 투고 : 2011.07.27
  • 심사 : 2011.08.20
  • 발행 : 2011.10.10

초록

본 연구에서는 분무 열분해 방법으로 제조된 메조기공 $V_2O_5/TiO_2$ 촉매 상에서 1,2-dichlorobenzene (1,2-DCB)의 표면 활성종을 파악하고자 하였다. 이를 위하여 in situ FT-IR cell을 이용하여 1,2-DCB의 흡착/탈착을 수행하였다. 또한 기존의 $TiO_2$와 incipient wetness로 제조된 $V_2O_5/TiO_2$ 상의 흡착종들과의 비교도 함께 수행되었다.

In this study, surface-adsorbed species of 1,2-dichlorobenzene (1,2-DCB) on mesoporous $V_2O_5/TiO_2$ catalysts synthesized by spray pyrolysis were investigated through the adsorption/desorption performed using in situ FT-IR cell. Also, the comparison of adsorbed species with $TiO_2$ and $V_2O_5/TiO_2$ synthesized by the incipient wetness was carried out.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea

참고문헌

  1. A. Fadli, C. Briois, C. Baillet, and J. P. Sawerysyn, Chemosphere, 38, 2835 (1999). https://doi.org/10.1016/S0045-6535(98)00497-4
  2. Y. Hashimoto and A. Ayame, Appl. Catal. A: Gen., 250, 247 (2003). https://doi.org/10.1016/S0926-860X(03)00319-3
  3. Y. Ukisu and T. Miyadera, Appl. Catal. B: Environ., 40, 141 (2003). https://doi.org/10.1016/S0926-3373(02)00148-0
  4. K. J. Kim, S. I. Boo, and H. G. Ahn, J. Ind. Eng. Chem., 15, 92 (2009). https://doi.org/10.1016/j.jiec.2008.09.005
  5. R. W. van den Brink, R. Louw, and P. Mulder, Appl. Catal. B: Environ., 16, 219 (1998). https://doi.org/10.1016/S0926-3373(97)00076-3
  6. S. J. Cho, Y. K. Park, J. K. Jeon, Y. S. Ko, J. H. Yim, and K. S. Yoo, J. Nanosci. Nanotechnol., 7, 3959 (2007). https://doi.org/10.1166/jnn.2007.074
  7. B. M. Weckhuysen and D. E. Keller, Catal. Today, 78, 25 (2003). https://doi.org/10.1016/S0920-5861(02)00323-1
  8. S. Chin, J. Jurng, J. H. Lee, and S. J. Moon, Chemosphere, 75, 1206 (2009). https://doi.org/10.1016/j.chemosphere.2009.02.015
  9. K. Y. Jung, Y. R. Jung, J. K. Jeon, J. H. Kim, Y. K. Park, and S. Kim, J. Ind. Eng. Chem., 17, 144 (2011). https://doi.org/10.1016/j.jiec.2010.12.013
  10. K. Y. Jung, Y. R. Jung, J. K. Jeon, J. H. Kim, and Y. K. Park, J. Nanosci. Nanotechnol., 11, 1710 (2011). https://doi.org/10.1166/jnn.2011.3335
  11. P. S. Chintawar and H. L. Greene, J. Catal., 165, 12 (1997). https://doi.org/10.1006/jcat.1997.1443
  12. S. Krishnamoorthy and M. D. Amiridis, Catal. Today, 51, 203 (1999). https://doi.org/10.1016/S0920-5861(99)00045-0
  13. C. E. Hetrick, J. Lichtenberger, and M. D. Amiridis, Appl. Catal. B: Environ., 77, 255 (2008). https://doi.org/10.1016/j.apcatb.2007.07.022