DOI QR코드

DOI QR Code

Thermal and Surface Properties of PET/Nylon66/Clay Nanocomposites

PET/Nylon66/Clay 나노복합재료의 열적물성 및 표면특성

  • Lee, Minho (Department of Chemical Engineering, University of Suwon) ;
  • Ku, Jahun (Department of Chemical Engineering, University of Suwon) ;
  • Min, Byung Hun (Department of Chemical Engineering, University of Suwon) ;
  • Kim, Jeong Ho (Department of Chemical Engineering, University of Suwon)
  • 이민호 (수원대학교 화학공학과) ;
  • 구자훈 (수원대학교 화학공학과) ;
  • 민병훈 (수원대학교 화학공학과) ;
  • 김정호 (수원대학교 화학공학과)
  • Received : 2011.07.19
  • Accepted : 2011.08.31
  • Published : 2011.10.10

Abstract

Nanocomposites of blends of polyethyleneterephthalate (PET) and polyamide66 (Nylon66) containing natural and organically modified montmorillonite clays (PM, $Cloisite^{(R)}$ 25A and 15A) were prepared by melt mixing. DSC results showed that the addition of clay changed the crystallization behavior of PET/Nylon66 nanocomposites. Clay C25A was observed to most significantly change the crystallization temperature than other clays in blends of PET and Nylon66, which may be caused by the difference in interaction with matrix polymers. AFM results also showed that the lowest value of surface roughness was observed for nanocomposites containing C25A indicating the smooth and relatively homogenous surface. Mechanical properties measurement showed the similar results. Contact angle was measured to study the difference in hydrophobicity. An increase in contact angle was observed for nanocomposites with C25A or C15A due to the increased hydrophobicity.

본 연구에서는 PET와 Nylon66의 블렌드에 몬모릴로나이트(PM) 또는 유기화제로 개질된 clay (Cloisite 25A 또는 15A)를 첨가하여 PET/Nylon66/clay 나노복합재료를 제조하였다. 나노복합재료는 용융삽입법을 이용하여 제조하였고 DSC 측정을 이용하여 분석한 결과 clay의 첨가로 인해 PET/Nylon66 블렌드의 결정화특성이 변화되는 것을 확인하였다. 특히 C25A가 PET/Nylon66 블렌드와의 상호작용이 가장 커서 결정화온도를 가장 크게 변화시키는 것으로 나타났다. 나노복합재료의 표면을 AFM으로 관찰한 결과에서도 C25A를 이용한 나노복합재료가 가장 표면의 굴곡이 적어서 상대적으로 표면이 균일한 것으로 나타났고 기계적 물성측정에서도 전반적으로 C25A를 이용한 나노복합재료가 우수한 물성을 나타내는 것으로 관찰되었다. 각 나노복합재료의 표면 극성도를 조사하기 위하여 접촉각 측정을 하였는데 유기화 정도가 클수록 표면의 접촉각이 커져서 극성이 낮아지는 것을 확인하였다.

Keywords

References

  1. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994). https://doi.org/10.1021/cm00046a026
  2. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  3. Jr F. M. Mirabella, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., 3015 (2004).
  4. B. Noval, Adv. Mater., 5, 422 (1993). https://doi.org/10.1002/adma.19930050603
  5. S. D. Burnside and E. P. Giannelis, Chem. Mater., 7, 1597 (1995). https://doi.org/10.1021/cm00057a001
  6. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997). https://doi.org/10.1021/ma9603488
  7. J. Park and S. C. Jana, Macromolecules, 36, 2758 (2003). https://doi.org/10.1021/ma021509c
  8. J. Park and S. C. Jana, Macromolecules, 36, 8391 (2003). https://doi.org/10.1021/ma0303465
  9. J. Park and S. C. Jana, Polymer, 45, 7673 (2004). https://doi.org/10.1016/j.polymer.2004.08.075
  10. S. Mehat, F. M. Mirabella, K. Rufener, and A. Bafna, J. Appl. Polym. Sci., 92, 928 (2004). https://doi.org/10.1002/app.13693
  11. X. Huang, S. Lewis, W. J. Brittain, and R. A. Vaia, Macromolecules, 33, 2000 (2000). https://doi.org/10.1021/ma991709x
  12. K. M. Lee and C. D. Han, Macromolecules, 36, 7165 (2003). https://doi.org/10.1021/ma030302w
  13. S. Choi, K. M. Lee, and C. D. Han, Macromolecules, 37, 7649 (2004). https://doi.org/10.1021/ma030585s
  14. D. C. Lee and L. W. Jang, J. Appl. Polym. Sci., 61, 1117 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1117::AID-APP7>3.0.CO;2-P
  15. G. Chen, X. Chen, Z. Lin, and K. J. Yao, J Mater Sci Lett, 18, 1761 (1999). https://doi.org/10.1023/A:1006627227324
  16. M. Okamoto, S. Moritta, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyama, Polymer, 41, 3887 (2000). https://doi.org/10.1016/S0032-3861(99)00655-2
  17. T. Agag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001). https://doi.org/10.1016/S0032-3861(00)00824-7
  18. J. H. Park and S. C. Jana, Polymer, 44, 2091 (2003). https://doi.org/10.1016/S0032-3861(03)00075-2
  19. S. Wang, Y. Hu, Z. Wang, T. Yong, Z. Chen, and W. Fan, Polym. Degrad. Stab., 80, 157 (2003). https://doi.org/10.1016/S0141-3910(02)00397-X
  20. Y. Ke, C. Long, and Z. Qi. J. Appl. Polym. Sci., 71, 1139 (1998).
  21. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Appl. Polym. Sci., 40, 2661 (2002). https://doi.org/10.1002/polb.10331
  22. L. Shen, I. Y. Phang, L. Chen, T. Liu, and K. Zeng, Polymer, 45, 3341 (2004). https://doi.org/10.1016/j.polymer.2004.03.036
  23. Z. Z. Yu, C. Yan, M. Yang, and Y. W. Mail, Polym. Int., 53, 1093 (2004). https://doi.org/10.1002/pi.1498
  24. C. I. W. Calcagno, C. M. Mariani, S. R. Teixeira, and R. S. Mauler, Polymer, 48, 966 (2007). https://doi.org/10.1016/j.polymer.2006.12.044
  25. I. Goitisolo, J. I. Eguiazábal, and J. Nazabal, Compos. Sci. Technol., 70, 873 (2010). https://doi.org/10.1016/j.compscitech.2010.02.005
  26. W. Xiao, H. Yu, K. Han, and M. Yu, J. Appl. Polym. Sci., 96, 2247 (2005). https://doi.org/10.1002/app.21703