DOI QR코드

DOI QR Code

바이오에너지 및 바이오화학원료인 C4-C6 생산

Production of C4-C6 for Bioenergy and Biomaterials

  • 김병천 (한양대학교 공과대학 화공생명공학부) ;
  • 이성철 (한양대학교 공과대학 화공생명공학부) ;
  • 상병인 (한양대학교 공과대학 화공생명공학부)
  • Kim, Byung-Chun (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Yi, Sung Chul (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Sang, Byoung-In (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University)
  • 투고 : 2011.09.29
  • 발행 : 2011.10.10

초록

석유자원의 고갈이 에너지 및 화학원료물질로 재생 가능한 바이오매스의 이용성을 증가시키고 있다. 본 총설에서는 바이오에너지 및 바이오화학원료인 C4-C6 생산에 관해 논하고자 한다. 주요한 C4 물질인 n-butanol과 n-butyric acid를 다량 생산하는 미생물은 Clostridium tyrobutyricum, Clostridium beijerinckii, Clostridium acetobutylicum이다. 대표적인 C6 물질인 n-hexanoic acid는 Clostridium kluyveri와 Megasphaera elsdenii가 다량 생산한다. 미생물 발효에 의해 보고된 n-butanol, n-butyric acid, n-hexanoic acid의 최대 생산량은 각각 21, 55, 19 g/L이었다. 배양과정에서 이들 생산물의 제거는 최종산물억제의 감소로 미생물에 의한 n-butanol, n-butyric acid, n-hexanoic acid의 생산량을 증가시켰다. 특히 C6 물질인 n-hexanoic acid는 n-hexanol로 될 수 있는 고 부가가치 물질로 생물학적 생산 연구가 꾸준히 진행 중인데, 신규한 미생물인 Clostridium sp. BS1은 galactitol을 이용하여 5 g/L의 n-hexanoic acid를 생산하였다.

Depletion of petroleum increased the need of alternative energy and chemical resources. Biomass, a renewable resource, can be transformed to bioenergy and biomaterials, and the materials from biomass will ultimately substitute petroleum based energy and chemical compounds. In this perspective, production of C4-C6 compounds for bioenergy and biomaterials are described for understating of current research progress. n-Butanol and n-butyric acid, the major C4 compounds, are produced by Clostridium tyrobutyricum, Clostridium beijerinckii, and Clostridium acetobutylicum. n-Hexanoic acid, a typical C6 compound, is produced by Clostridium kluyveri and Megasphaera elsdenii. Reported maximum amount of n-butanol, n-butyric acid and n-hexanoic acid was 21, 55, and 19 g/L, respectively, and extraction of these C4-C6 compounds are induced increase production by those anaerobic bacteria. In addition, a new bacterium Clostridium sp. BS-1 produced 5 g/L of n-hexanoic acid using galactitol.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Knowledge and Economy (MKE)

참고문헌

  1. M. Kleinert and T. Barth, Energy & Fuels, 22, 1371 (2008). https://doi.org/10.1021/ef700631w
  2. M. Parikka, Biomass Bioenergy, 27, 613 (2004). https://doi.org/10.1016/j.biombioe.2003.07.005
  3. H. L. Chum and R. P. Overend, Advances in Solar Energy: an Annual Review, ed. Y. Goswami, 83, American Solar Energy Society, Boulder (2003).
  4. P. Forward, Food Bureau, Market and Industry Services Branch, Dept of Agriculture and Agri-Food, Ottawa (1994).
  5. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, Science, 311, 484 (2006). https://doi.org/10.1126/science.1114736
  6. B. H. Kim and G. M. Gadd, Bacterial physiology and metabolism. Cambridge University Press, Cambridge (2008).
  7. S.-M. Lee, M. O. Cho, C. H. Park, Y.-C. Chung, J. H. Kim, B.-I. Sang, and Y. S. Um, Energy Fuels, 22, 3459 (2008). https://doi.org/10.1021/ef800076j
  8. J. Formanek, R. Mackie, and H. P. Blaschek, Appl. Environ. Microbiol., 63, 2306 (1997).
  9. S. R. Wilkinson and M. Young, J. Bacteriol., 177, 439 (1995). https://doi.org/10.1128/jb.177.2.439-448.1995
  10. C. B. Milne, J. A. Eddy, R. Raju, S. Ardekani, P. J. Kim, R. S. Senger, Y. S. Jin, H. P. Blaschek, and N. D. Price, BMC Syst. Biol., 5, 130 (2011). https://doi.org/10.1186/1752-0509-5-130
  11. S. A. Survase, G. Jurgens, A. van Heiningen, and T. Granstrom, Appl. Microbiol. Biotechnol., 91, 1305 (2011). https://doi.org/10.1007/s00253-011-3322-3
  12. T. Guo, Y. Tang, Y. L. Xi, A. Y. He, B. J. Sun, H. Wu, D. F. Liang, M. Jiang, and P. K. Ouyang, Biotechnol. Lett., doi: 10.1007/s10529-011-0702-9 (2011).
  13. D. T. Jones and D. R. Woods, Microbiol. Rev., 50, 484 (1986).
  14. J. Lee, H. Yun, A. M. Feist, B. O. Palsson, and S. Y. Lee, Appl. Microbiol. Biotechnol., 80, 849 (2008). https://doi.org/10.1007/s00253-008-1654-4
  15. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, Appl. Microbiol. Biotechnol., 34, 172 (1990). https://doi.org/10.1007/BF00166775
  16. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, Appl. Microbiol. Biotechnol., 33, 127 (1990).
  17. Z. Wu and S. T. Yang, Biotechnol. Bioeng., 82, 93 (2003). https://doi.org/10.1002/bit.10542
  18. R. J. Mitchell, J. S. Kim, B. S. Jeon, and B. I. Sang, Bioresour. Technol., 100, 5352 (2009). https://doi.org/10.1016/j.biortech.2009.05.046
  19. L. Jiang, J. Wang, S. Liang, X. Wang, P. Cen, and Z. Xu, Bioresour. Technol., 100, 3403 (2009). https://doi.org/10.1016/j.biortech.2009.02.032
  20. E. T. Sauer, Kirk-Othmer encyclopedia of chemical technology, ed. M. Howe-Grant, 179, Wiley-Interscience, New York (1992).
  21. S. Budavari, The Merck index: an encyclopedia of chemicals, drugs, and biologics, Merck, Rahway (1989).
  22. P. F. Levy, J. E. Sanderson, E. Ashare, and S. R. d. Riel, CRC liquid fuels developments, ed. D. L. Wise, 159, CRC Boca Raton, Fla (1983).
  23. P. F. Levy, J. E. Sanderson, E. Ashare, D. L. Wise, and M. S. Molyneaux, Liquid fuels production from biomass. US Department of Energy, Washington (1980).
  24. P. F. Levy, J. E. Sanderson, R. G. Kispert, and D. L. Wise, Enzyme. Microb. Technol., 3, 207 (1981). https://doi.org/10.1016/0141-0229(81)90087-9
  25. H. A. Barker and S. M. Taha, J. Bacteriol., 43, 347 (1942).
  26. E. F. Kohlmiller, Jr. and H. Gest, J. Bacteriol., 61, 269 (1951).
  27. R. F. Rosenberger, Ph. D. Dissertation, Edinburgh University, Edinburgh (1952).
  28. L. V. Holdeman, E. P. Cato, and W. E. C. Moore, Anaerobe laboratory manual, 4th, Virginia Polytechnic Institute and State University, Blacksburg (1977).
  29. B. R. Genthner, C. L. Davis, and M. P. Bryant, Appl. Environ. Microbiol., 42, 12 (1981).
  30. J. Gutierrez, R. E. Davis, I. L. Lindahl, and E. J. Warwick, Appl. Microbiol., 7, 16 (1959).
  31. D. Giesecke, S. Wiesmayr, and M. Ledinek, J. Gen. Microbiol., 64, 123 (1970). https://doi.org/10.1099/00221287-64-1-123
  32. M. Rogosa, Int. J. Syst. Bacteriol., 21, 187 (1971). https://doi.org/10.1099/00207713-21-2-187
  33. F. A. Roddick and M. L. Britz, VIIth Australian Biotechnology Conference Melbourne, 386 (1986).
  34. M. P. Bryant and I. M. Robinson, J. Bacteriol., 84, 605 (1962).
  35. T. Hino, K. Miyazaki, and S. Kuroda, J. Gen. Appl. Microbiol., 37, 121 (1991). https://doi.org/10.2323/jgam.37.121
  36. H. Marx, A. B. Graf, N. E. Tatto, G. G. Thallinger, D. Mattanovich, and M. Sauer, J. Bacteriol., 193, 5578 (2011). https://doi.org/10.1128/JB.05861-11
  37. A. A. Herrero, Trends Biotechnol., 1, 49 (1983). https://doi.org/10.1016/0167-7799(83)90069-0
  38. F. A. Roddick and M. L. Britz, J. Chem. Tech. Biotechnol., 69, 383 (1997). https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<383::AID-JCTB723>3.0.CO;2-H
  39. W. R. Kenealy and D. M. Waselefsky, Arch Microbiol, 141, 187 (1985). https://doi.org/10.1007/BF00408056
  40. W. R. Kenealy, Y. Cao, and P. J. Weimer, Appl. Microbiol. Biotechnol., 44, 507 (1995). https://doi.org/10.1007/BF00169952
  41. Y. Shi and P. J. Weimer, Appl. Environ. Microbiol., 58, 2583 (1992).
  42. P. J. Weimer, Arch. Microbiol., 160, 288 (1993). https://doi.org/10.1007/BF00292079
  43. S. G. Wi, H. J. Kim, S. A. Mahadevan, D. J. Yang, and H. J. Bae, Bioresour. Technol., 100, 6658 (2009). https://doi.org/10.1016/j.biortech.2009.07.017
  44. B. S. Jeon, B. C. Kim, Y. Um, and B. I. Sang, Appl. Microbiol. Biotechnol., 88, 1161 (2010). https://doi.org/10.1007/s00253-010-2827-5
  45. M. V. Smith and M. D. Pierson, Appl. Environ. Microbiol., 37, 978 (1979).
  46. R. Bar and J. L. Gainer, Biotechnol. Progr., 3, 109 (1987). https://doi.org/10.1002/btpr.5420030208
  47. C. Weilnhammer and E. Blass, Chem. Eng. Technol., 17, 365 (1994). https://doi.org/10.1002/ceat.270170602
  48. R. Basu and K. K. Sirkar, AIChE J, 37, 383 (1991). https://doi.org/10.1002/aic.690370309
  49. R. Basu and K. K. Sirkar, J. Membr. Sci., 75, 131 (1992). https://doi.org/10.1016/0376-7388(92)80012-9