DOI QR코드

DOI QR Code

그림자 영향을 고려한 PV 시스템의 VPO MPPT 제어

Development of VPO MPPT of PV System Considering Shadow Influence

  • 투고 : 2011.08.12
  • 심사 : 2011.09.22
  • 발행 : 2011.10.20

초록

본 논문은 그림자 영향을 고려한 PV(Photovoltaic) 시스템의 VPO(Variable Perturbation & Observation)MPPT(Maximum Power Point Tracking) 제어를 제시한다. 태양전지의 출력 특성은 비선형이고 온도, 일사량 및 그림자의 영향을 많이 받는다. MPPT 제어는 태양광발전 시스템의 출력 및 효율을 증가시키기 위한 매우 중요한 기술이다. 종래의 PO(Perturbation & Observation)와 IC(Incremental conductance) 등은 지속적인 자려진동에 의해 MPP(Maximum Power Point)를 찾는 방법으로 그림자 영향에 의해 출력이 급격하게 변할 경우 MPPT 제어를 수행하지 못한다. 이러한 문제점을 해결하기 위해 출력 변동에 따라 스텝 값이 변하는 새로운 제어 알고리즘을 제시한다. 제시한 알고리즘은 일사량, 온도 및 그림자 영향에 대해 종래의 제어 알고리즘과 응답특성을 비교하고 이를 통해 제시한 알고리즘의 타당성을 입증한다.

This paper presents the variable perturbation and observation(VPO) maximum power point tracking(MPPT) control of the photovoltaic(PV) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. MPPT control is a very important technique in order to increase an output and efficiency of the solar power generation. Conventional perturbation and observation(PO) and incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, this paper proposes the VPO MPPT algorithm which changes step size according to output variation. The response characteristics of VPO MPPT algorithm proposed in this paper compares with response characteristics of conventional MPPT algorithm about the radiation, temperature and shadow influence. The validity of the algorithm proposed in this paper prove through the results of the comparisons.

키워드

참고문헌

  1. 김수덕, "신재생 전원설비의 전력수급계획 적용방안", 산업자원부 최종보고서, pp. 13-20, 2005.
  2. 전력거래소, "기반기금 적용대상 전원별 설비용량 및 기준가격", 전력거래소, 2006.
  3. H. J. Noh, D. Y. LEE, D. S. Hyun, "An improved MPPT converter with current compensation method for small scaled PV-applications", IEEE IES, Vol. 2, pp. 1113-1118, 2002.
  4. R. Andoubi, A. Mami, G. Dauphin, M. Annabi, "Bond graph modelling and dynamic study of a photovoltaic system using MPPT buck-boost converter", IEEE ICS, Vol. 3, pp. 200-205, 2002.
  5. N. Femia, G. Petron, G. Spagnuolo, and M. Vitelli, "Optimization of perturb and observe maximum power point tracking method", IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 963-973, 2005, Jul. https://doi.org/10.1109/TPEL.2005.850975
  6. P. Wolfs, Q. Li "A current-sensor-free incremental conductance single cell MPPT for high performance vehicle solar arrays", PESC06. pp. 1-7.
  7. L. Zhanlg, A. Al-Amoudi, Y. Bai, "Real-time maximum power point tracking for grid-connected photovoltaic systems", IEEE Pabl., No. 475, pp. 124-129, 2000.
  8. Tae-Kyung Kang, Kang-Hoon Koh, Young-Cheal Kim, "The study on MPPT algorithm for improved incCond algorithm", 한국태양에너지학회, pp. 299-306, 2004.
  9. E. Roman, P. Ibanez, S. Elorduizapatarietxe , R. Alonso, D.Goitia, and I. Martinez de Alegia, "Intelligent PV module for grid-connected PV systems", in Proc. IEEE 30th Annual Conference of the IEEE Industrial Electronics Society, pp. 3082-3087, 2004, Nov.
  10. X. Sun, W. Wu, X. Li, Q Zhao, "A research on photovoltaic energy controlling system with maximum power point tracking", Proc. of PCC'02, Vol. 2, pp. 822-826, 2002.
  11. Geoff Walker, "Evaluating MPPT converter topologies using a matlab PV model", Journal of Electrical & Electronics Engineering, Australia. pp. 49-55, 2001.
  12. J. A. Abu-Qahouq, H. Mao, H. J. Al-Atrash, and I. Batarseh, "Maximum efficiency point tracking (MEPT) method and digital dead time control implementation", IEEE Trans. Power Electron., Vol. 21, No. 5, pp. 1273-1281, 2006, Sep. https://doi.org/10.1109/TPEL.2006.880244

피인용 문헌

  1. MPPT Control of PV System using Improved PO Method vol.63, pp.12, 2014, https://doi.org/10.5370/KIEE.2014.63.12.1649