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AN ESTIMATE OF THE SOLUTIONS FOR STOCHASTIC

FUNCTIONAL DIFFERENTIAL EQUATIONS†
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Abstract. In this paper, we give an estimate on the difference between
xn(t) and x(t) and it clearly shows that one can use the Picard iteration
procedure to the approximate solutions to stochastic functional differen-
tial equations with infinite delay at phase space BC((−∞, 0] : Rd) which
denotes the family of bounded continuous Rd-valued functions ϕ defined
on (−∞, 0] with norm ‖ ϕ ‖= sup−∞<θ≤0 |ϕ(θ)| under non-Lipschitz con-
dition being considered as a special case and a weakened linear growth
condition.
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1. Introduction

Stochastic differential equations(SDEs in short) are well known to model prob-
lems from many areas of science and engineering, wherein quite often the future
state of such systems depends not only on the present state but also on its past
history(delay) leading to stochastic functional differential equations(SFDEs in
short) with delay rather than SDEs. In the recent years, there is an increasing
interest in stochastic evolution equations with finite delay under less restric-
tive conditions than Lipschitz condition; on this topic, one can see Boukfaoui
and Erraoui [3], Govindan [4], Halidias [5], Henderson and Plaschko [6], Liu [7],
Taniguchi [10], Wei and Wang [11], and references therein for details.

Mao[8] showed the existence and uniqueness of the solution to the following
SFDEs under uniform Lipschitz condition and linear growth condition on the
coefficients:

dX(t) = f(Xt, t)dt+ g(Xt, t)dB(t), t0 ≤ t ≤ T,
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where Xt = {X(t + θ) : −τ ≤ θ ≤ 0} could be considered as a C([−τ, 0];Rd)-
value stochastic process, f : C((−τ, 0];Rd)×[t0, T ] → Rd and g : C((−τ, 0];Rd)×
[t0, T ] → Rd×m be Borel measurable.

Recently, Ren et al [9] considered one such class of the so-called stochastic
functional differential equations with infinite delay (ISFDEs in short) at phase
space BC((−∞, 0];Rd) to be described below:

dX(t) = f(Xt, t)dt+ g(Xt, t)dB(t), t0 ≤ t ≤ T, (1)

where Xt = {X(t+θ) : −∞ ≤ θ ≤ 0} could be considered as a BC((−∞, 0];Rd)-
value stochastic process and the initial value was proposed as follows:

Xt0 = ξ = {ξ(θ) : −∞ ≤ θ ≤ 0} is anFt0 −measurable (2)

BC((−∞, 0];Rd)− value randomvariable such that ξ ∈ M2((−∞, 0];Rd).

Now we recall the following the existence and uniqueness theorem to (1) with
initial data (2) under the non-Lipschitz condition and the weakened linear growth
condition proved by Ren et al.

Theorem 1.1 ([9]). Assume that (H1) and (H2) hold.
(H1) For any ϕ,ψ ∈ BC((−∞, 0];Rd) and t ∈ [t0, T ], it follows that

|f(ϕ, t)− f(ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ κ(‖ϕ− ψ‖2),
where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0.
(H2) For any t ∈ [t0, T ], it follows that f(0, t), g(0, t) ∈ L2 such that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K,

where K > 0 is a constant. Then, there exist a unique solution to (1) with initial
data (2). ¤

Motivated by the above works, in this paper we will give an estimate on the
difference between xn(t) and x(t) and it clearly shows that one can use the
Picard iteration procedure to the approximate solutions to ISDEs under the
non-Lipschitz condition and the weakened linear growth condition.

2. Preliminary

Let | · | denote Euclidean norm in Rn. If A is a vector or a matrix, its trans-
pose is denoted by AT ; if A is a matrix, its trace norm is represented by
|A| =

√
trace(ATA). Let t0 be a positive constant and (Ω,F , P ), throughout this

paper unless otherwise specified, be a complete probability space with a filtration
{Ft}t≥t0 satisfying the usual conditions (i.e. it is right continuous and Ft0 con-
tains all P -null sets). Assume that B(t) is an m-dimensional Brownian motion
defined on complete probability space, that is B(t) = (B1(t), B2(t), ..., Bm(t))T .
Let BC((−∞, 0];Rd) denote the family of bounded continuous Rd-value func-
tions ϕ defined on (−∞, 0] with norm ‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)|. We denote by
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M2((−∞, T ];Rd) the family of all Ft0-measurable, Rd-valued process ψ(t) =

ψ(t, w), t ∈ (−∞, 0], such that
∫ 0

−∞ |ψ(t)|2dt < ∞.
With all the above preparation, consider a d-dimensional stochastic functional

differential equations:

dx(t) = f(xt, t)dt+ g(xt, t)dB(t), t0 ≤ t ≤ T, (3)

where xt = {x(t + θ) : −∞ < θ ≤ 0} can be considered as a BC((−∞, 0];Rd)-
value stochastic process, where f : BC((−∞, 0];Rd) × [t0, T ] → Rd and g :
BC((−∞, 0];Rd) × [t0, T ] → Rd×m be Borel measurable. Next, we give the
initial value of (1) as follows:

xt0 = ξ = {ξ(θ) : −∞ < θ ≤ 0} is anFt0 −measurable (4)

BC((−∞, 0];Rd)− value randomvariable such that ξ ∈ M2((−∞, 0];Rd).

In order to find a solution of initial-value problem for the equation satisfying
the initial data, we define the solution of equation. The definition is followed:

Definition 2.1 ([8]). Rd-value stochastic process x(t) defined on −∞ < t ≤ T is
called the solution of (3) with initial data (4), if x(t) has the following properties:

(i) x(t) is continuous and {x(t)}t0≤t≤T is Ft-adapted;

(ii) {f(xt, t)} ∈ L1([t0, T ];R
d) and {g(xt, t)} ∈ L2([t0, T ];R

d×m) ;

(iii) xt0 = ξ, for each t0 ≤ t ≤ T,

x(t) = ξ(0) +

∫ t

t0

f(xs, s)ds+

∫ t

t0

g(xs, s)dB(s) a.s.

The x(t) is called as a unique solution, if any other solution x(t) is distin-
guishable with x(t), that is

P{x(t) = x(t), for any −∞ < t ≤ T} = 1. ¤

3. The Approximate Solutions

In order to obtain an estimate of the solutions to (3) with initial data (4), we
define x0

t0 = ξ and x0(t) = ξ(0), for t0 ≤ t ≤ T. Let xn
t0 = ξ, n = 1, 2, ... and

define the Picard sequence:

xn(t) = ξ(0) +

∫ t

t0

f(xn−1
s , s) ds+

∫ t

t0

g(xn−1
s , s) dB(s), t0 ≤ t ≤ T. (5)

Now we begin to establish the approximate solutions for (3) with initial data
(4) under the non-Lipschitz condition and the weakened linear growth condition.
We first prepare some lemmas.
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Lemma 3.1 (Gronwall’s inequality). Let u(t) and b(t) be nonnegative continu-
ous functions for t ≥ α, and let

u(t) ≤ a+

∫ t

α

b(s)u(s)ds, t ≥ α,

where a ≥ 0 is a constant. Then

u(t) ≤ a exp

(∫ t

α

b(s)ds

)
, t ≥ α.

Lemma 3.2 ([8], p.39). If p ≥ 2, g ∈ M2([0, T ];Rd×m) such that

E

∫ T

0

|g(s)|p ds < ∞,

then

E

∣∣∣∣
∫ T

0

g(s) dB(s)

∣∣∣∣
p

≤
(
p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0

|g(s)|p ds.

In particular, for p = 2, there is equality.

Lemma 3.3 ([8], p.40). Under the same assumptions as Lemma 3.2,

E

(
sup

0≤t≤T

∣∣∣
∫ t

0

g(s)dB(s)
∣∣∣
p
)

≤
(

p3

2(p− 1)

) p
2

T
p−2
2 E

∫ T

0

|g(s)|pd(s).

In [9], they have shown that the Picard iterations xn(t) converge to the unique
solution x(t) of equation. The following theorem gives an estimate on the differ-
ence between xn(t) and x(t), and it clearly shows that one can use the Picard
iteration procedure to obtain the approximate solutions to equation.

Theorem 3.4. Assume that there exists a positive number K such that
(i) For any ϕ,ψ ∈ BC((−∞, 0];Rd) and t ∈ [t0, T ], it follows that

|f(ϕ, t)− f(ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ κ(‖ϕ− ψ‖2), (6)

where κ(·) is a concave nondecreasing function from R+ to R+ satisfying the
following κ(0) = 0, κ(u) > 0 for u > 0.

(ii) For any t ∈ [t0, T ], it follows that f(0, t), g(0, t) ∈ L2 such that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K. (7)

Let x(t) be the unique solution of equation (3) with initial data (4) and xn(t) be
the Prcard iterations defined by (5). Then, for all n ≥ 1,

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ 2CM1M

n−1(T − t0)
n

n!
e2M1(T−t0), (8)

where C = 4(T − t0)(T − t0 + 1)(K + b(E‖ξ‖2)), M = 2b(T − t0 + 1),M1 =
2b(T − t0 + 4), and b is some positive constant.
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Proof. From the Picard sequence and the definition of the solution of equation
(3), we have

xn(t)− x(t)

=

∫ t

t0

[f(xn−1
s , s)− f(xs, s)]ds+

∫ t

t0

[g(xn−1
s , s)− g(xs, s)]dB(s).

Using the elementary inequality |u+ v|2 ≤ 2(|u|2 + |v|2) and Hölder inequality,
we can derive that

|xn(t)− x(t)|2

≤ 2(t− t0)

∫ t

t0

κ(‖xn−1
s − xs‖2)ds+ 2

∣∣∣∣
∫ t

t0

[g(xn−1
s , s)− g(xs, s)]dB(s)

∣∣∣∣
2

.

It also follows that

sup
t0≤s≤t

|xn(s)− x(s)|2

≤ 2(t− t0)

∫ t

t0

κ(‖xn−1
s − xs‖2)ds+ 2 sup

t0≤s≤t

∣∣∣∣
∫ s

t0

[g(xn−1
r , r)− g(xr, r)]dB(r)

∣∣∣∣
2

.

Taking the expectation and using Lemma 3.3, we find that

E
(

sup
t0≤s≤t

|xn(s)− x(s)|2
)

(9)

≤ 2(T − t0)

∫ t

t0

E
(

sup
t0≤r≤s

|xn(r)− x(r)|2
)
ds+ 8

∫ t

t0

E
(

sup
t0≤r≤s

|xn(r)− x(r)|2
)
ds

≤ 2M1

∫ t

t0

E
(

sup
t0≤r≤s

|xn(r)− xn−1(r)|2
)
ds+ 2M1

∫ t

t0

E
(

sup
t0≤r≤s

|xn(r)− x(r)|2
)
ds,

where M1 = 2b(T − t0 + 4). We now claim that for n ≥ 0,

E

(
sup

t0≤s≤t
|xn+1(s)− xn(s)|2

)
≤ C[M(t− t0)]

n

n!
. (10)

We shall show this by induction. From the Picard sequence and Hölder inequal-
ity, we have

E|x1(t)− x0(t)|2 ≤ 2E

∣∣∣∣
∫ t

t0

f(x0
s, s)ds

∣∣∣∣
2

+ 2E

∣∣∣∣
∫ t

t0

g(x0
s, s)dB(s)

∣∣∣∣
2

.

Next, using Lemma 3.2 and elementary inequality (u + v)2 ≤ 2(u2 + v2), we
derive that

E|x1(t)− x0(t)|2 ≤ 2(t− t0)E

∫ t

t0

|f(x0
s, s)− f(0, s) + f(0, s)|2ds

+2E

∫ t

t0

|g(x0
s, s)− g(0, s) + g(0, s)|2dB(s)

≤ 2(t− t0)E

∫ t

t0

2[|f(x0
s, s)− f(0, s)|2 + |f(0, s)|2]ds
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+2E

∫ t

t0

2[|g(x0
s, s)− g(0, s)|2 + |g(0, s)|2]dB(s).

From the condition (6) and (7), we have

E|x1(t)− x0(t)|2 ≤ 4(T − t0 + 1)

∫ t

t0

E[K + κ(‖X0
s‖2)] ds.

Given that κ(·) is concave and κ(0) = 0, we can find a positive constant b such
that κ(u) ≤ bu for u ≥ 0. So, we have

E|x1(t)− x0(t)|2 ≤ 4(T − t0 + 1)(t− t0)(K + b(E‖ξ‖2)).
One further obtains that

E

(
sup

t0≤s≤t
|x1(s)− x0(s)|2

)
≤ 4(T − t0 + 1)(T − t0)(K + b(E‖ξ‖2)) = C.

By the same ways as above, we obtain

E|x2(t)− x1(t)|2

≤ 2E

∣∣∣∣
∫ t

t0

(f(x1
s, s)− f(x0

s, s))ds

∣∣∣∣
2

+ 2E

∣∣∣∣
∫ t

t0

(g(x1
s, s)− g(x0

s, s))dB(s)

∣∣∣∣
2

≤ 2(t− t0)E

∫ t

t0

|f(x1
s, s)− f(X0

s , s)|2ds+ 2E

∫ t

t0

|g(x1
s, s)− g(x0

s, s)|2ds,

thus we derive that

E

(
sup

t0≤s≤t
|x2(s)− x1(s)|2

)
≤ 2(T − t0 + 1)E

∫ t

t0

κ(‖x1
s − x0

s‖2) ds.

From the definition of κ(·), we have

E

(
sup

t0≤s≤t
|x2(s)− x1(s)|2

)
≤ 2(T − t0 + 1)

∫ t

t0

b(E sup
t0≤r≤s

|x1(r)− x0(r)|2) ds.

One further obtains that

E

(
sup

t0≤s≤t
|x2(s)− x1(s)|2

)
≤ MC(t− t0),

where M = 2b(T − t0+1). When n = 0, 1, the inequality (10) holds. We suppose
that (10) holds for some n, now to check (10) for n+ 1. In fact,

E

(
sup

t0≤s≤t
|xn+2(s)− xn+1(s)|2

)

≤ 2(T − t0 + 1)

∫ t

t0

κ
(
E sup

t0≤r≤s
|xn+1(r)− xn(r)|2

)
ds

≤ M

∫ t

t0

E
(

sup
t0≤r≤s

|xn+1(r)− xn(r)|2
)
ds

≤ M

∫ t

t0

C[M(s− t0)]
n

n!
ds
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≤ C[M(t− t0)]
n+1

(n+ 1)!
.

It is easy to see that (10) holds for n+1, therefore, by induction, (10) holds for
n ≥ 0.

Substituting (10) into inequality (9) yields that

E
(

sup
t0≤s≤t

|xn(s)− x(s)|2
)

≤ 2M1

∫ T

t0

C[M(s− t0)]
n−1

(n− 1)!
ds+ 2M1

∫ t

t0

E
(

sup
t0≤r≤s

|xn(r)− x(r)|2
)
ds

≤ 2CM1M
n−1[(T − t0)]

n

n!
ds+ 2M1

∫ t

t0

E
(

sup
t0≤r≤s

|xn(r)− x(r)|2
)
ds.

The required inequality (8) now follows by applying the Gronwall inequality.
The proof is complete. ¤
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