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BARRIER OPTION PRICING UNDER THE VASICEK MODEL

OF THE SHORT RATE†

SUN YU-DONG∗, SHI YI-MIN, GU XIN

Abstract. In this study, assume that the stock price obeys the stochas-
tic differential equation driven by mixed fractional Brownian motion, and
the short rate follows the Vasicek model. Then, the Black-Scholes partial
differential equation is held by using fractional Ito formula. Finally, the
pricing formulae of the barrier option are obtained by partial differential
equation theory. The results of Black-Scholes model are generalized.
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1. Introduction

In this article, we focus our analysis on the pricing of financial contracts with
barriers under the Vasicek model of the short rate in mixed fractional Brownian
motion environment. Barrier options are among the most popularly exotic op-
tions traded in financial markets. A barrier option offers the holder a payoff like
that of a vanilla option, contingent on whether or not the underlying asset price
process crosses some level(s)-called the barrier(s)-before or at the maturity date.
The closed form formulae and replication strategies for barrier options are given
by Peter Carr [1]. Analytical formulae using the method of images in the case of
one barrier applied continuously are presented in Ref.[2]. Using reflection prin-
ciple in Brownian motions, the solution in general as summation of an infinite
number of normal distribution functions for standard double barrier options, and
in many non-trivial cases the solution consists of only finite terms are expressed
by Sanfelici [3]. For more information , a detailed comprehensive guide of option
pricing formulae is that of Haug [4]. Recently, fractional Brownian motion has
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been considered to replace Brownian motion in the usual financial models as
it has better behaved tails and exhibits long-term dependence while remaining
Gaussian. For details about the stochastic analysis theory of fractional Brown-
ian motion, see Ref.[5,6]. The fractional Brownian motion is applied in finance,
such as Ref.[7,8,9]. However, all the above option pricing studies assume that the
risk-free rate or the short rate is constant during the life of the option. Hence, in
this study, we incorporate its stochastic nature into our option valuation model.
Specifically, we use the following stochastic process(see Eq.(1)), first proposed by
Vasicek, to depict its dynamics and derive explicit pricing formulae for Barrier
option on a stock. The paper is organized as follows: In Section 2, we treat the
Black-Scholes model that the short rate obeys the Vasicek model. In Section 3,
we derive the formula for the price of a riskless zero-coupon bond paying $1 at
maturity based on Eq.(2). In Section 4, the pricing formulas for Barrier options
on a stock are obtained. Section 5 contains conclusions.

2. The model

Firstly, we assume that the short rate of the market satisfied the Vasicek
model

drt = θ(µr − rt)dt+ σr1 ¦ dWH1(t) + σr2 ¦ dWH2(t), (1)

where rt is the short-term interest rate. θ is the mean-reversion speed. µr is
the long-term interest rate. σr1 and σr2 are the instantaneous volatility. WH1(t)
and WH2(t) are the fractional Brownian motion with Hurst parameter H1,H2.∫ t

0
f(s) ¦ dWH1 is Wick-Ito-Skorohod integral not Rieman-Stieltjes integral,see

Ref.[5,6]. Secondly, there are zero-coupon bond and stock in this market. Let
Bt be the price of a riskless zero-coupon bond paying 1 $ at time T .

dB(t, rt) = rtBtdt+ σb1B(t, rt) ¦ dWH1 + σb2B(t, rt) ¦ dWH2 , B(T, rT ) = 1. (2)

And, the dynamics of the stock price process takes the following form

dSt = µStdt+ σ1St ¦ dWH1(t) + σ2St ¦ dWH2(t), (3)

where µ is expectation return rate which is time-dependent. Constant σ1 and
σ2 are volatility of the stock.

3. Explicit pricing formulae of zero-coupon bond under the vasicek
model

To solve the value of B(t, rt) , by Eq. (1) and fractional Ito formula, we have

dB(t, rt) =
∂B(t, rt)

∂t
dt+

∂B(t, rt)

∂rt
¦ drt

+H1σ
2
r1t

2H1−1 ∂
2B(t, rt)

∂r2t
dt+H2σ

2
r2t

2H2−1 ∂
2B(t, rt)

∂r2t
dt
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=
∂B(t, rt)

∂t
dt+ θ(µr − rt)

∂B(t, rt)

∂rt
dt

+ σr1
∂B(t, rt)

∂rt
¦ dWH1

(t) + σr2
∂B(t, rt)

∂rt
¦ dWH2

(t)

+H1σ
2
r1t

2H1−1 ∂
2B(t, rt)

∂r2t
dt+H2σ

2
r2t

2H2−1 ∂
2B(t, rt)

∂r2t
dt.

Compare to Eq.(2), we obtain

∂B(t, rt)

∂t
+ θ(µr − rt)

∂B(t, rt)

∂rt
+H1σ

2
r1t

2H1−1 ∂
2B(t, rt)

∂r2t

+H2σ
2
r2t

2H2−1 ∂
2B(t, rt)

∂r2t
− rtB(t, rt) = 0.

Then the value of zero-coupon bond at time t satisfied




∂B(t,x)
∂t + θ(µr − x)∂B(t,x)

∂x +H1σ
2
r1t

2H1−1 ∂2B(t,x)
∂x2

+H2σ
2
r2t

2H2−1 ∂2B(t,x)
∂x2 − xB(t, x) = 0,

B(T, x) = 1.

(4)

Assume that B(t, x) = exp{A1(t) + xA2(t)}, A1(T ) = 0, A2(T ) = 0, so that

∂B(t, rt)

∂t
= A′

1(t)B(t, x) + xA′
2(t)B(t, x),

∂B(t, x)

∂x
= A2(t)B(t, x),

∂2B(t, x)

∂x2
= A2(t)

2B(t, x). (5)

Compare Eq.(4) and Eq.(5), then





θA2(t)−A′
2(t) + 1 = 0,

A′
1(t) + θµrA2(t) + (H1σ

2
r1t

2H1−1 +H2σ
2
r2t

2H2−1)A2(t)
2 = 0,

A1(T ) = 0, A2(T ) = 0.

Then we conclude that

A1(t) =− µr(T − t)− µr(1− eθ(T−t))

−
T∫

t

(H1σ
2
r1s

2H1−1 +H2σ
2
r2s

2H2−1)A2(s)
2ds,

A2(t) =
1− θ exp{−θ(T − t)}

θ
.

So that, the explicit solution of Eq.(4) is given by the following theorem.
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Theorem 1. The price of a riskless zero-coupon bond at time t can be written
as:

B(t, rt) = exp{A1(t) + rtA2(t)}, B(T, rT ) = 1. (6)

When θ = 0, σr1 = 0, σr2 = 0, we have drt = 0,then rt = r. And, the Eq.(6) can
be changed as follows

B(t, rt) = exp{r(T − t)}.
4. Explicit pricing formulae for barrier options

In what follows we introduce some relevant derivatives of two stocks, and
show how to obtain the formulae for the value of these derivatives. Let

D1(t) = H1σ
2
b1B(t, rt)

2 +H1σ
2
b1B(t, rt)

2, D2(t) = H1σ
2
1t

2H1−1 +H2σ
2
2t

2H2−1,

D3(t) = H1σb1σ2t
2H1−1 +H2σb1σ2t

2H2−1, D(t) = D1(t) +D2(t)− 2D3(t).

In this study, we assume that there is no transaction cost, margin requirement
and tax; all securities are divisible; security trading is continuous and borrowing,
and short-selling is permitted without restriction; there is no dividend payout
over the life of the option; all investors can borrow or lend at the same short
rate. Further, we consider the down and out barrier call option with payoff.
Denoted by T the maturity of the options, by K their strike, and by HB(t, rt)
their barrier level, one can write the following arbitrage-free pricing formulae for
the up and out call option:

(ST −B(T, rT )K)+I{St>HB(t,rt)},

where H is the constant, B(t, rt) is the zero-coupon bond of Eq.(6). According
to our assumption , there are zero-coupon bond and stock in this market(no bank
deposit), the strike price K at time T must be consider as K units zero-coupon
bond, since (ST −B(T, rT )K)+I{St>HB(t,rt)} can be written as

(ST −B(T, rT )K)+I{St>HB(t,rt)} = (ST −K)+I{St>HB(t,rt)}, (7)

where T is maturity date, K is exercise price.
Let C = C(St, B(t, rt), t,K) be the call price which is a function of the stock
price St, the riskless zero-coupon bond priceB(t, rt) at the time t. By Ito’s
lemma, the change in the call price over an infinitesimal time dt satisfies the
following stochastic differential equation:

dC =
∂C

∂t
dt+

∂C

∂B(t, rt)
¦ dB(t, rt) +D1(t)

∂2C

∂B(t, rt)2
dt

+
∂C

∂St
¦ dSt +D2(t)S

2
t

∂2C

∂S2
t

dt+ 2D3(t)
∂2C

∂St∂B(t, rt)
dt

=[
∂C

∂t
+D1(t)

∂2C

∂B(t, rt)2
+D2(t)S

2
t

∂2C

∂S2
t

+ 2D3(t)
∂2C

∂St∂B(t, rt)
]dt

+
∂C

∂B(t, rt)
¦ dB(t, rt) +

∂C

∂St
¦ dSt. (8)
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Now we form a hedge portfolio consisting of the stock, the riskless bond and the
call. Let θ0t be the number of shares of the bond, θ1t be the number of the stock,
and θ2t be the number of the call. The self-finance hedge is formed such that the
value (say, H) of the hedge portfolio is zero. That is

H = θ0tB(t, rt) + θ1tSt + θ2tC = 0.

Hence, we have

dH = θ0t dB(t, rt) + θ1t dSt + θ2t dc = 0. (9)

Substituting Eq.(8) into Eq.(9) and grouping, Eq.(9) becomes

dH =θ2t [
∂C

∂t
+D1(t)

∂2C

∂B(t, rt)2
+D2(t)S

2
t

∂2C

∂S2
t

+ 2D3(t)
∂2C

∂St∂B(t, rt)
]dt

+ [θ2t
∂C

∂St
+ θ1t ] ¦ dSt + [

∂C

∂B(t, rt)
+ θ0t ] ¦ dB(t, rt). (10)

Eq(10) implies that θ2t
∂C
∂St

+ θ1t = 0, ∂C
∂B(t,rt)

+ θ0t = 0, and

∂C

∂t
+D1(t)B(t, rt)

2 ∂2C

∂B(t, rt)2
+D2(t)S

2
t

∂2C

∂S2
t

+2D3(t)StB(t, rt)
∂2C

∂St∂B(t, rt)
= 0.

Hence, the following theorem can be obtained.

Theorem 2. The price of European call option with payoff(ST −B(T, rT )K)+

must satisfy




∂C
∂t +D1(t)y

2 ∂2C
∂y2 +D2(t)x

2 ∂2C
∂x2 + 2D3(t)xy

∂2C
∂x∂y = 0,

C(T, x, y) = (x−Ky)+, x > Hy,
C(t,Hy, y) = 0, t > 0.

(11)

Let

ξ =
x

y
, F (t, ξ) =

C

y
, (12)

we get

Cx =
∂F

∂ξ
, Cy = F − ξ

∂F

∂ξ
, Cxx =

1

y

∂2F

∂ξ2
, Cxy = − ξ

y

∂2F

∂ξ2
, Cyy =

ξ2

y2
∂2F

∂ξ2
. (13)

Substituting Eqs.(13) into Eq.(11), reduces to

∂F

∂t
+D(t)ξ2

∂2F

∂ξ2
= 0, F (T, ξ) = (ξ −K)+, F (t,H) = 0, ξ > H, t > 0. (14)

Denoting

s =

∫ T

t

D(τ)dτ, F (t, ξ) = U(s, ξ), (15)

we have
ds

dt
= −D(t),

∂F

∂t
=

∂U

∂s

ds

dt
= −D(t)

∂U

∂s
.
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According to Eqs.(15), Eq.(14) becomes

∂U

∂s
(s, ξ) =

∂2U

∂ξ2
(s, ξ)ξ2, U(0, ξ) = (ξ −K)+, U(s,H) = 0, ξ > H, s > 0. (16)

Let

z = ln
ξ

H
,U(s, ξ) = H exp{1

2
z − 1

4
s}V (s, z), (17)

Eq.(16) can be changed as follows

∂V

∂s
=

∂2V

∂z2
,

V (0, z) = V0(z) = e−
1
2 z(ez − K

H
)+, z ≤ 0,

V (s, 0) = 0, z > 0, s > 0 (18)

Eq.(18) is standard one-dimensional heat equation thus can be solved. According
to the Fourier integral theorem, we have

V (s, z) =
1

2
√
πs

+∞∫

0

u0(τ)[e
− (τ−z)2

4s − e−
(τ+z)2

4s ]dτ

=
1

2
√
πs

+∞∫

0

e−
1
2 τ (eτ − K

H
)+[e−

(τ−z)2

4s − e−
(τ+z)2

4s ]dτ = I1 − I2,

where

I1 =
1

2
√
πs

+∞∫

0

e−
1
2
τ (eτ − K

H
)+e−

(z−τ)2

4s dτ

=
1

2
√
πs

+∞∫

ln K
H

e
1
2
τe−

(z−τ)2

4s dτ − K

H

1

2
√
πs

+∞∫

ln K
H

e−
1
2
τe−

(z−τ)2

4s dτ

=exp{ s
4
+

z

2
} 1

2
√
πs

+∞∫

ln K
H

e−
(τ−s−z)2

4s dτ − K

H
exp{ s

4
− z

2
} 1

2
√
πs

+∞∫

ln K
H

e−
(τ−z+s)2

4s dτ

=exp{ s
4
+

z

2
}Φ(s+ z − ln K

H√
2s

)− K

H
exp{ s

4
− z

2
}Φ(−z − s− ln K

H√
2s

),

and

I2 =
1

2
√
πs

+∞∫

0

e−
1
2
τ (eτ − K

H
)+e−

(z+τ)2

4s dτ

=
1

2
√
πs

+∞∫

ln K
H

e
1
2
τe−

(z+τ)2

4s dτ − K

H

1

2
√
πs

+∞∫

ln K
H

e−
1
2
τe−

(z+τ)2

4s dτ
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=exp{ s
4
− z

2
} 1

2
√
πs

+∞∫

ln K
H

e−
(τ−s+z)2

4s dτ − K

H
exp{ s

4
+

z

2
} 1

2
√
πs

+∞∫

ln K
H

e−
(τ+z+s)2

4s dτ

=exp{ s
4
− z

2
}Φ(s− z − ln K

H√
2s

)− K

H
exp{ s

4
+

z

2
}Φ(− ln K

H
+ z + s√
2s

).

Such that, we have

V (s, z) = exp{s
4
+

z

2
}Φ(s+ z − ln K

H√
2s

)− K

H
exp{s

4
− z

2
}Φ(−z − s− ln K

H√
2s

)

− exp{s
4
− z

2
}Φ(s− z − ln K

H√
2s

)− K

H
exp{s

4
+

z

2
}Φ(− ln K

H + z + s√
2s

).

By the inverse transformation of Eq.(12), Eq.(15) and Eq.(17), the price of down
and out call is hold.

Theorem 3. When H < K, the price of down and out call option can be written
as follow

Cdown−and−out(t, B(t, rt), St) =StΦ(d1)−KB(t, rt)Φ(d2)

−HB(t, rt)Φ(d3) +
K

H
StΦ(d4), (19)

where,

d1 = − lnSt − lnB(t, rt)− lnK + s√
2s

, d2 = − lnSt − lnB(t, rt)− lnK − s√
2s

,

d3 =
lnB(t, rt)− lnSt − lnK + 2 lnH + s√

2s
, d4 =

lnB(t, rt)− lnSt − lnK + 2 lnH − s√
2s

.

when H > K the price of down and out call option is

Cdown−and−out(t, B(t, rt), St) = 0. (20)

By the same way, other barrer options’ formulae can be expressed as following:
Corollary 1. When H < K down and in call option is

Cdown−and−in(t, B(t, rt), St) = HB(t, rt)Φ(d3)− K

H
StΦ(d4). (21)

Corollary 2. When H > K down and in call option is

Cdown−and−in(t, B(t, rt), St) = StΦ(d1)−KB(t, rt)Φ(d2). (22)

Corollary 3. When H > K, up and in call option can be written as

Cup−and−in(t, B(t, rt), St) = StΦ(d5)−KB(t, rt)Φ(d6) +HB(t, rt)[Φ(d3)

− Φ(d7)]− K

H
St[Φ(d4)− Φ(d8)]. (23)

where

d5 =
lnB(t, rt)− lnSt + lnH − s√

2s
, d6 =

lnB(t, rt)− lnSt + lnH + s√
2s

,
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d7 =
lnSt − lnB(t, rt)− lnH − s√

2s
, d8 =

lnSt − lnB(t, rt)− lnH + s√
2s

.

Corollary 4. When H < K,up and in T call option can be written as

C ′
up−and−in(t, B(t, rt), St) = StΦ(d1)−KB(t, rt)Φ(d2). (24)

Corollary 5. When H > K,up and out call option can be written as

Cup−and−out(t, B(t, rt), St)

=St[Φ(d1)− Φ(d5)]−KB(t, rt)[Φ(d2)− Φ(d6)]

−HB(t, rt)[Φ(d3)− Φ(d7)] +
K

H
St[Φ(d4)− Φ(d8)]. (25)

Corollary 6. When H < K, up and out call option can be written as

C ′
up−and−out(t, B(t, rt), St) = 0. (26)

5. Conclusion

In this paper, we derived a closed-form pricing formula for barrier options.
Previous option pricing studies typically assume that the short rate is constant
or time-function over the life of the option. And the stock is driven by standard
Brownian motion. In reality, the short rate is evolving randomly through time,
and the stock is driven by fractional Brownian motion. Our findings suggest
that barrier options on a stock can be calculated when the short rate follows the
Vasicek model in fractional Brownian motion environment. It is clear that the
Eq.(19) - Eq.(26) are the generalization of the classical Black-Scholes model.

References

1. P.Carr, K.Ellis and V.Gupta, Static hedging of exotic options, J. Finance.
Vol.53(1998),No.1, 1165-1190.

2. Y.K. Kwok, Mathematical Models of Financial Derivatives, Springer-Verlag, Heidelberg,
1998.

3. S.Sanfelici, Galerkin infinite element approximation for pricing barrier options and options
with discontinuous payoff, J. Decisions in Economics and Finance.Vol.27(2004),No.2, 125-
151.

4. E.G.Haug, The Complete Guide to Option Pricing Formulas, McGraw-Hill, New York,
1997.

5. R.J.Elliott and J.A.Hoek, A General Fractional White Noise Theory and Applications to
Finance, J. Mathematical Finance. Vol.13(2003),No.2, 301-330.

6. Y.Hu and J.Oksendal, Fractional White Noise Calculus and Applications to Finance, Infi-
nite Dimensional Analysis , J. Quantum Probability and Related Topics. Vol.6(2003),No.1
1-32.

7. F.E.Benth, On arbitrage-free pricing of weather derivatives based on fractional Brownian
motion , J. Applied Mathematical Finance. Vol.10(2003),No.4, 303-324.

8. T. Bjork and H.Hult, A note on Wick products and the fractional Black-Scholes model , J.
Finance and Stochastics. Vol.9(2005),No.2 197-209.



Barrier option pricing under the Vasicek model of the short rate 1509

9. P. Guasoni, No arbitrage under transaction costs with fractional Brownian motion and
beyond, J. Mathematical Finance. Vol16(2006),No.3, 569-582.

Sun Yu-dong, Shi Yi-min, Gu Xin are professors in Department of Applied Mathe-
matics, Northwestern Polytechnical University.

Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072,
China.
e-mail: yudongsun@139.com


