J. Appl. Math. & Informatics Vol. **29**(2011), No. 5 - 6, pp. 1489 - 1500 Website: http://www.kcam.biz

IDEAL THEORY OF d-ALGEBRAS BASED ON \mathcal{N} -STRUCTURES

SUN SHIN AHN* AND GYEONG HO HAN

ABSTRACT. The notions of \mathcal{N} -subalgebra, (positive implicative) \mathcal{N} -ideals of *d*-algebras are introduced, and related properties are investigated. Characterizations of an \mathcal{N} -subalgebra and a (positive implicative) \mathcal{N} -ideals of *d*-algebras are given. Relations between an \mathcal{N} -subalgebra, an \mathcal{N} -ideal and a positive implicative \mathcal{N} -ideal of *d*-algebras are discussed.

AMS Mathematics Subject Classification : 06F35, 03G25. Key words and phrases : N-subalgebra, (positive implicative) N-ideal, d-algebra.

1. Introduction

J. Neggers and H. S. Kim ([13]) introduced the idea of a *d*-algebra as a generalization of *BCK*-algebras introduced by Y. Imai and K. Iséki ([7]). This class of algebras has been studied in rather great detail and is of current interest to many researchers ([2,3,9,10,11,12]). Beside *d*-algebras, other generalizations of *BCK*-algebras include the class of *BCI*-algebras, also introduced by Y. Imai and K. Iséki ([8]), the class of *BCH*-algebras, introduce by Q. P. Hu and X. Li ([5,6]), of which the class of *BCI*-algebras is a proper subclass. The class of *BCK*-algebras is a proper subclass of the class of *d*-algebras, and it has been shown that many constructions on the class of *d*-algebras leave this class invariant, but not so the class of *BCK*-algebras. For example, the mirror algebra of a *d*-algebra is a *d*-algebra, but the mirror algebra of a *BCK*-algebra is not necessarily a *BCK*-algebra ([2]). J. Neggers, Y. B. Jun and H. S. Kim ([12]) have studied the ideal theory of *d*-algebras, introducing the notions of *d*-subalgebra, *d*-ideal, $d^{\#}$ -ideal and d^{*} -ideal, and various relations among them. After that some further aspects were studied in [3,9,10,11].

In this paper, we introduce the notions of \mathcal{N} -subalgebra, (positive implicative) \mathcal{N} -ideals of *d*-algebras, investigate their related properties. We also find

Received May 2, 2011. Revised June 28, 2011. Accepted June 29, 2011. $\ ^* {\rm Corresponding}$ author.

^{© 2011} Korean SIGCAM and KSCAM.

characterizations of an \mathcal{N} -subalgebra and a (positive implicative) \mathcal{N} -ideals of d-algebras. We discuss relations between an \mathcal{N} -subalgebra, an \mathcal{N} -ideal and a positive implicative \mathcal{N} -ideal of d-algebras.

2. Preliminaries

A *d-algebra* ([13]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- $(\mathbf{I}) \quad x \ast x = 0,$
- $(\mathrm{II}) \quad 0 * x = 0,$
- (III) x * y = 0 and y * x = 0 imply x = y, for all $x, y \in X$.

For brevity we also call X a *d*-algebra. In X, we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0. Note that if X is a *d*-algebra with x * 0 = 0 for any $x \in X$, then x = 0.

A BCK-algebra is a d-algebra (X; *, 0) satisfying the additional axioms:

- (IV) ((x * y)) * (x * z)) * (z * y) = 0,
- (V) (x * (x * y)) * y = 0, for all $x, y, z \in X$.

Example 2.1 ([12]). Let \mathbb{R} be the set of all real numbers and define $x * y := -x(x-y), x, y \in \mathbb{R}$, where " \cdot " and "-" are the ordinary product and subtraction of real numbers. Then ($\mathbb{R}; \cdot, 0$) is a *d*-algebra, not a *BCK*-algebra, since $5 * 0 = -5^2 = -25 \neq 5$.

Definition 2.2 ([12]). Let (X; *, 0) be a *d*-algebra and $\emptyset \neq I \subseteq X$. *I* is a *d*-subalgebra of *X* if $x * y \in I$ whenever $x \in I$ and $y \in I$. *I* is called a *BCK*-ideal (briefly, an *ideal*) of *X* if it satisfies:

 $(D_0) \quad 0 \in I,$

 (D_1) $x * y \in I$ and $y \in I$ imply $x \in I$.

I is a called a *d*-ideal of X if it satisfies (D_1) and

 (D_2) $x \in I$ and $y \in X$ imply $x * y \in I$, i.e., $I * X \subseteq I$.

I is called a $d^{\#}$ -ideal of X if it satisfies $(D_1), (D_2)$ and

 (D_3) $x * z \in I$ whenever $x * y \in I$ and $y * z \in I$, for any $x, y, z \in X$.

I is called a d^* -ideal of X if it satisfies $(D_1), (D_2), (D_3)$ and

 $(D_4) \quad x * y \in I \text{ and } y * x \in I \text{ imply } (x * z) * (y * z) \in I \text{ and } (z * x) * (z * y) \in I,$ for any $x, y, z \in X.$

Note that d^* -ideal $\subsetneq d^{\#}$ -ideal $\subsetneq d$ -ideal in a d-algebra (See [13]).

Definition 2.3 ([13]). Let (X; *, 0) be a *d*-algebra and $x \in X$. Define $x * X := \{x * a | a \in X\}$. X is said to be *edge* if for any $x \in X$, $x * X = \{x, 0\}$.

Lemma 2.4 ([13]). Let (X; *, 0) be an edge d-algebra. Then x * 0 = x for any $x \in X$.

Definition 2.5 ([12]). A *d*-algebra X is called a d^* -algebra if it satisfies the identity (x * y) * x = 0 for all $x, y \in X$.

Clearly, a BCK-algebra is a d^* -algebra, but the converse need not be true (see [12]).

Theorem 2.6 ([12]). In a d^* -algebra, every BCK-ideal is a d-ideal.

Corollary 2.7 ([12]). In a d^* -algebra, every BCK-ideal is a d-subalgebra.

Definition 2.8 ([1]). A *d*-algebra X is *positive implicative* if for all $x, y, z \in X, (x * y) * z = (x * z) * (y * z)$.

Example 2.9 ([1]). Let $X := \{0, a, b, c\}$ be a *d*-algebra which is not a *BCK*-algebra with the following table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b			0
c	c	c	c	0

Then (X; *, 0) is a positive implicative *d*-algebra.

Proposition 2.10. If X is a positive implicative d^* -algebra, then x * 0 = x for any $x \in X$.

Proof. Since X is a d^* -algebra, we have (x * 0) * x = 0 for any $x \in X$. Using (I) and (II), we obtain

$$(x * (x * 0)) * 0 = (x * (x * 0)) * (0 * (x * 0))$$
$$= (x * 0) * (x * 0) = 0.$$

Hence x * (x * 0) = 0. By (III), we have x * 0 = x.

3. \mathcal{N} -subalgebras and (positive implicative) \mathcal{N} -ideals

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure we mean an ordered pair (X, φ) of a d-algebra X and an \mathcal{N} -function on X. In what follows, let X denote a d-algebra and φ an \mathcal{N} -function on X unless specified.

Definition 3.1. An \mathcal{N} -structure (X, φ) is called a *subalgebra of* X *based on* \mathcal{N} -function φ (briefly, \mathcal{N} -subalgebra of X) if φ satisfies the following assertion: (N1) $\varphi(x * y) \leq \max\{\varphi(x), \varphi(y)\}, \forall x, y \in X.$

For any \mathcal{N} -function φ on X and $t \in [-1, 0)$, the set

$$C(\varphi;t) := \{x \in X | \varphi(x) \le t\}$$

is called a *closed* (φ, t) -*cut* of φ , and the set

 $O(\varphi; t) := \{ x \in X | \varphi(x) < t \}$

is called an open (φ, t) -cut of φ .

Theorem 3.2. Let (X, φ) be an \mathcal{N} -structure of X and φ . Then (X, φ) is an \mathcal{N} -subalgebra of X if and only if every non-empty closed (φ, t) -cut of φ is a subalgebra of X for all $t \in [-1, 0)$.

Proof. Assume that (X, φ) is an \mathcal{N} -subalgebra of X and let $t \in [-1, 0)$ be such that $C(\varphi; t) \neq \emptyset$. Let $x, y \in C(\varphi, t)$. Then $\varphi(x) \leq t$ and $\varphi(y) \leq t$. It follows from (N1) that

$$\varphi(x * y) \le \max\{\varphi(x), \varphi(y)\} \le t$$

so that $x * y \in C(\varphi; t)$. Hence $C(\varphi; t)$ is a subalgebra of X.

Conversely, suppose that every non-empty closed (φ, t) -cut of φ is a subalgebra of X for all $t \in [-1, 0)$. If (X, φ) is not an N-subalgebra of X, then there exist $a, b \in X$ and $t_0 \in [-1, 0)$ such that $\varphi(a * b) > t_0 \ge \max\{\varphi(a), \varphi(b)\}$. Hence $a, b \in C(\varphi; t_0)$ and $a * b \notin C(\varphi; t_0)$. This is a contradiction. Thus $\varphi(x * y) \le \max\{\varphi(x), \varphi(y)\}$ for all $x, y \in X$.

Corollary 3.3. If (X, φ) is an \mathcal{N} -subalgebra of X, then every non-empty open (φ, t) -cut of φ is a subalgebra of X for all $t \in [-1, 0)$.

Proof. Straightforward.

Lemma 3.4. Every \mathcal{N} -subalgebra of X satisfies the following inequality:

$$\varphi(x) \ge \varphi(0), \forall x \in X$$

Proof. Using (N1), we have

$$\varphi(0) = \varphi(x * x) \le \max\{\varphi(x), \varphi(x)\} = \varphi(x)$$

for all $x \in X$.

Proposition 3.5. Let X be an edge d-algebra. If every \mathcal{N} -subalgebra (X, φ) of X satisfies the following inequality:

$$\varphi(x * y) \le \varphi(y)$$
 for any $x, y \in X$,

then φ is a constant function.

Proof. Let $x \in X$. Using Lemma 2.4 and assumption, we have $\varphi(x) = \varphi(x*0) \leq \varphi(0)$. It follows from Lemma 3.4 that $\varphi(x) = \varphi(0)$, and so φ is a constant function.

Definition 3.6. An \mathcal{N} -structure (X, φ) is called an *ideal of* X *based on* \mathcal{N} -*function* φ (briefly, \mathcal{N} -*ideal* of X) if φ satisfies the following assertion:

(N2) $\varphi(0) \leq \varphi(x), \forall x \in X.$

 $(\mathrm{N3}) \ \varphi(x) \leq \max\{\varphi(x*y),\varphi(y)\}, \forall x,y \in X.$

Example 3.7. Let $X := \{0, a, b, c\}$ be a set with the following Cayley table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	a
c	c	c	c	0

1492

Then (X; *, 0) is a *d*-algebra, which is not a *BCK/BCI*-algebra. Define a *N*-function φ by

*	0	a	b	c
φ	-0.8	-0.4	-0.4	-0.3

It is easy to check that (X, φ) is both an \mathcal{N} -subalgebra and an \mathcal{N} -ideal of X.

Proposition 3.8. If (X, φ) is an \mathcal{N} -ideal of X, then

$$x \leq y \Rightarrow \varphi(x) \leq \varphi(y)$$
 for any $x, y \in X$.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0, and so $\varphi(x) \leq \max\{\varphi(x * y), \varphi(y)\}$

$$= \max\{\varphi(0), \varphi(y)\}$$
$$= \varphi(y).$$

This completes the proof.

Definition 3.9. Let (X; *, 0) be a *d*-algebra, and let $\emptyset \neq I \subseteq X$. *I* is called a *positive implicative ideal* if it satisfies, for all $x, y, z \in X$,

- (i) $0 \in I$,
- (ii) $(x * y) * z \in I$ and $y * z \in I$ imply $x * z \in I$.

Obviously, X is always a positive implicative ideal of X.

Proposition 3.10. Any positive implicative ideal of a *d*-algebra X with x*0 = x for any $x \in X$ is a *BCK*-ideal of X.

Proof. Straightforward.

The converse of Proposition 3.10 is not true as seen in the following example. **Example 3.11.** Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following Cayley table:

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	1	0	1	0	1
3	3	1	1	0	0	1
4	4	1	1	1	0	1
5		5	5	5	5	0

Then X is a d-algebra with x * 0 = x for all $x \in X$ and also it not a BCK/BCI-algebra. Let $I := \{0\}$. Then I is a BCK-ideal (briefly, an ideal) of X, but not a positive implicative ideal of X since $(2 * 3) * 3 = 0 \in I$, but $2 * 3 = 1 \notin I$. Let $J := \{0, 1, 2, 3, 4\}$. Then J is a positive implicative ideal of X.

Definition 3.12. An \mathcal{N} -structure (X, φ) is called a *positive implicative ideal of* X based on \mathcal{N} -function φ (briefly, positive implicative \mathcal{N} -ideal of X) if φ satisfies (N2) and

 \Box

(N4)
$$\varphi(x * z) \leq \max\{\varphi((x * y) * z), \varphi(y * z)\}, \forall x, y, z \in X.$$

Example 3.13. Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following Cayley table:

*	0	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	2
2	2	2	0	0	2	1
3	3	3	3	0	0	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Then (X; *, 0) is a *d*-algebra which is not a *BCK/BCI*-algebra. Define an *N*-function φ by

It is easy to show that (X, φ) is an \mathcal{N} -ideal of X and a positive implicative \mathcal{N} -ideal of X. Define an \mathcal{N} -function v by

It is easily checked that (X, v) is an \mathcal{N} -subalgebra, an \mathcal{N} -ideal, and not a positive implicative \mathcal{N} -ideal of X, since $v(2 * 4) = v(2) = -0.4 \leq -0.8 = v(0) = \max\{v((2 * 3) * 4), v(3 * 4)\}.$

Theorem 3.14. For any subalgebra (resp., (positive implicative) ideal) U of X, there exists an \mathcal{N} -function φ such that (X, φ) is an \mathcal{N} -subalgebra (resp., (positive implicative) \mathcal{N} -ideal) of X and $C(\varphi; t) = U$ for some $t \in [-1, 0)$.

Proof. Let U be a subalgebra (resp., (positive implicative) ideal) of X and let φ be an \mathcal{N} -function on X defined by

$$\varphi(x) = \begin{cases} 0 & \text{if } x \notin U, \\ t & \text{otherwise} \end{cases}$$

where t is fixed in [-1,0). Then (X,φ) is an \mathcal{N} -subalgebra (resp., (positive implicative) \mathcal{N} -ideal) of X and $C(\varphi;t) = U$.

Theorem 3.15. Let (X, φ) be an \mathcal{N} -structure of X and φ . Then (X, φ) is a positive implicative \mathcal{N} -ideal of X if and only if it satisfies:

(1) $C(\varphi;t) \neq \emptyset \Rightarrow C(\varphi;t)$ is a positive implicative ideal of X for all $t \in [-1,0)$.

Proof. Assume that (X, φ) is a positive implicative \mathcal{N} -ideal of X and let $t \in [-1,0)$ be such that $C(\varphi;t) \neq \emptyset$. Obviously, $0 \in C(\varphi;t)$. Let $x, y, z \in X$ be such that $(x * y) * z, y * z \in C(\varphi;t)$. Then $\varphi(y * z) \leq t$ and $\varphi((x * y) * z) \leq t$. It follows

from (N4) that $\varphi(x * z) \leq \max\{\varphi((x * y) * z), \varphi(y * z)\} \leq t$ so that $x * z \in C(\varphi; t)$. Hence $C(\varphi; t)$ is a positive implicative ideal of X.

Conversely, suppose that (1) is valid. If there exists $a \in X$ such that $\varphi(0) > \varphi(a)$, then $\varphi(0) > t_a \ge \varphi(a)$ for some $t_a \in [-1,0)$. Then $0 \notin C(\varphi;t_a)$ which is a contradiction. Now assume that there exist $a, b, c \in X$ such that $\varphi(a * c) > \max\{\varphi((a * b) * c), \varphi(b * c)\}$. Then there exists $s \in [-1,0)$ such that $\varphi(a * c) > s \ge \max\{\varphi((a * b) * c), \varphi(b * c)\}$. It follows that $(a * b) * c \in C(\varphi; s)$ and $b * c \in C(\varphi; s)$, but $a * c \notin C(\varphi; s)$. This is impossible, and so $\varphi(x * z) \le \max\{\varphi((x * y) * z), \varphi(y * z)\}$ for all $x, y, z \in X$. Therefore (X, φ) is a positive implicative \mathcal{N} -ideal of X.

Theorem 3.16. Let (X, φ) be an \mathcal{N} -structure of X and φ . Then (X, φ) is an \mathcal{N} -ideal of X if and only if it satisfies:

(2)
$$C(\varphi;t) \neq \emptyset \Rightarrow C(\varphi;t)$$
 is an ideal of X for all $t \in [-1,0)$.

Proof. Straightforward.

Corollary 3.17. If (X, φ) is a (positive implicative) \mathcal{N} -ideal of X, then every non-empty open $(\varphi; t)$ -cut of φ is a (positive implicative) ideal of X for all $t \in [-1, 0)$.

Proposition 3.18. Let (X, φ) be an \mathcal{N} -ideal of X. If X satisfies the following assertion:

(3) $x * y \le z$ for all $x, y, z \in X$, then $\varphi(x) \le \max\{\varphi(y), \varphi(z)\}$ for all $x, y, z \in X$.

Proof. Assume that (3) is valid in X. Then

$$\begin{split} \varphi(x*y) &\leq \max\{\varphi((x*y)*z), \varphi(z)\} \\ &= \max\{\varphi(0), \varphi(z)\} \\ &= \varphi(z), \quad \forall x, y, z \in X. \end{split}$$

Hence $\varphi(x) \leq \max\{\varphi(x * y), \varphi(y)\} \leq \max\{\varphi(z), \varphi(y)\}$. Thus $\varphi(x) \leq \max\{\varphi(y), \varphi(z)\}$ for all $x, y, z \in X$.

Theorem 3.19. For any d^* -algebra X, every \mathcal{N} -ideal is an \mathcal{N} -subalgebra of X.

Proof. Let (X, φ) be an \mathcal{N} -ideal of a d^* -algebra X and let $x, y \in X$. Then

$$\begin{aligned} \varphi(x * y) &\leq \max\{\varphi((x * y) * x), \varphi(x)\} \\ &= \max\{\varphi(0), \varphi(x)\} \\ &\leq \max\{\varphi(x), \varphi(y)\}. \end{aligned}$$

Thus (X, φ) is an \mathcal{N} -subalgebra of X.

The converse of Theorem 3.19 may not be true in general as seen in the following example.

Example 3.20. Let $X := \{0, 1, 2, 3, 4\}$ be a set with the following Cayley table:

*	0	a	b	c
0		0	0	0
$a \\ b$	$a \\ b$	$\stackrel{\circ}{0}_{b}$	0	0
b	b			0
c	c	c	a	0

It is easily verified that (X; *, 0) is a d^* -algebra which is not a BCK/BCIalgebra. Define a \mathcal{N} -function φ by

Then (X, φ) is an \mathcal{N} -subalgebra, not an \mathcal{N} -ideal, since $\varphi(c) = -0.2 \leq -0.5 = \max\{\varphi(c * b), \varphi(b)\}.$

Proposition 3.21. If (X, φ) is a positive implicative \mathcal{N} -ideal of an edge *d*-algebra X, then it is an \mathcal{N} -ideal of X.

 \Box

Proof. Straightforward

Proposition 3.22. Let (X, φ) be a positive implicative \mathcal{N} -ideal of an edge *d*-algebra X.

(i) If $x \leq y$, then $\varphi(x) \leq \varphi(y)$ for any $x, y \in X$.

(ii) If $\varphi(x * y) = \varphi(0)$, then $\varphi(x) \le \varphi(y)$ for any $x, y \in X$.

Proof. (i) Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0. Hence

$$\begin{split} \varphi(x) &= \varphi(x*0) \leq \max\{\varphi((x*y)*0), \varphi(y*0)\} \\ &= \max\{\varphi(x*y), \varphi(y)\} \\ &= \max\{\varphi(0), \varphi(y)\} \\ &= \varphi(y). \end{split}$$

Thus $\varphi(x) \leq \varphi(y)$.

(ii) For any $x, y \in X$, we have

$$\begin{split} \varphi(x) &= \varphi(x*0) \leq \max\{\varphi((x*y)*0), \varphi(y*0)\} \\ &= \max\{\varphi(x*y), \varphi(y)\} \\ &= \max\{\varphi(0), \varphi(y)\} \\ &= \varphi(y). \end{split}$$

Thus $\varphi(x) \leq \varphi(y)$.

Proposition 3.23. Let X be an edge d^* -algebra. If (X, φ) is a positive implicative \mathcal{N} -ideal of X, then

- (i) $\varphi(x * y) \leq \varphi(x)$ for any $x, y \in X$.
- (ii) $\varphi(x * y) \le \max\{\varphi(x), \varphi(y)\}$ for any $x, y \in X$.
- $\text{(iii)} \ \varphi(x*(y*z)) \leq \max\{\varphi(x),\varphi(y),\varphi(z)\} \text{ for any } x,y,z \in X.$

Proof. (i) Since X is a d^* -algebra, we have (x * y) * x = 0 and so $x * y \le x$ for any $x, y \in X$. Using Proposition 3.22 (i), we have $\varphi(x * y) \le \varphi(x)$. (ii) It is easily verified from Theorem 3.19 and Proposition 3.21. (iii) For any $x, y, z \in X$, we have

$$\begin{split} \varphi(x*(y*z)) &\leq \max\{\varphi(x),\varphi(y*z)\} \\ &\leq \max\{\varphi(x),\varphi(y),\varphi(z)\}. \end{split}$$

For any element w of X, we consider the set

$$X_w := \{ x \in X | \varphi(x) < \varphi(w) \}.$$

Obviously, $w \in X_w$, and so X_w is a non-empty subset of X.

Theorem 3.24. Let $w \in X$. If (X, φ) is a positive implicative \mathcal{N} -ideal of X, then the set X_w is a positive implicative ideal of X.

Proof. Using Corollary 3.17, it is evident.

 \square

Theorem 3.25. Let $w \in X$. If (X, φ) is an \mathcal{N} -ideal of X, then the set X_w is an ideal of X.

Proof. Straightforward.

Theorem 3.26. Let $w \in X$ and let (X, φ) be an \mathcal{N} -structure of X and φ . (i) If X_w is an ideal of X, then (X, φ) satisfies the following assertion:

(4) $\varphi(x) \ge \max\{\varphi(y * z), \varphi(z)\} \Rightarrow \varphi(x) \ge \varphi(y), \forall x, y, z \in X.$

(ii) If (X, φ) satisfies $\varphi(0) \leq \varphi(x)$ for all $x \in X$ and (4), then X_w is an ideal of X.

Proof. (i) Assume that X_w is an ideal of X for each $w \in X$. Let $x, y, z \in X$ be such that $\varphi(x) \ge \max\{\varphi(y * z), \varphi(z)\}$. Then $y * z \in X_x$ and $z \in X_x$. Since X_x is an ideal of X, it follows that $y \in X_x$, i.e., $\varphi(y) \le \varphi(x)$.

(ii) Suppose that (X, φ) satisfies $\varphi(0) \leq \varphi(x)$ for all $x \in X$ and (4). For each $w \in X$, let $x, y \in X$ be such that $x * y \in X_w$ and $y \in X_w$. Then $\varphi(x * y) \leq \varphi(w)$ and $\varphi(y) \leq \varphi(w)$, which imply that $\max\{\varphi(x * y), \varphi(y)\} \leq \varphi(w)$. Using (4), we have $\varphi(w) \geq \varphi(x)$ and so $x \in X_w$. Since $\varphi(0) \leq \varphi(w)$ for any $w \in X$, we have $0 \in X_w$. Therefore X_w is an ideal of X.

Proposition 3.27. Let (X, φ) be an \mathcal{N} -structure of X and φ . Then X_w is an ideal of X for any $w \in X$ if and only if

- (i) $\varphi(0) \leq \varphi(w)$
- (ii) $\varphi(x * y) \leq \varphi(w)$ and $\varphi(y) \leq \varphi(w)$ imply $\varphi(x) \leq \varphi(y)$ for any $x, y \in X$.

Proof. Assume that X_w is an \mathcal{N} -ideal of X for any $w \in X$. Then $\varphi(0) \leq \varphi(w)$. Let $x, y, z \in X$ be such that $\varphi(x * y) \leq \varphi(w)$ and $\varphi(y) \leq \varphi(w)$. Then $x * y, y \in X_w$. Since X_w is an ideal of X, we have $x \in X_w$. Hence $\varphi(x) \leq \varphi(w)$.

Conversely, consider X_w for any $w \in X$. Obviously, $0 \in X_w$ for any $w \in X$. Assume that $x * y, y \in X_w$. Then $\varphi(x * y) \leq \varphi(w)$ and $\varphi(y) \leq \varphi(w)$. It follows from hypothesis that $\varphi(x) \leq \varphi(w)$. Hence $x \in X_w$. Thus X_w is an ideal of X.

Theorem 3.28. Let X be a d-algebra. Then an \mathcal{N} -subalgebra (X, φ) of X is a positive implicative \mathcal{N} -ideal of X if and only if for any $x, y, z \in X, x * z \in C(\varphi; t), y * z \notin C(\varphi; t)$ imply $(y * x) * z \notin C(\varphi; t)$.

Proof. Assume that an \mathcal{N} -subalgebra (X, φ) of X is a positive implicative \mathcal{N} -ideal of X and let $x, y, z \in X$ be such that $x * z \in C(\varphi; t), y * z \notin C(\varphi; t)$. If $(y * x) * z \in C(\varphi; t)$, then $\varphi(y * z) \leq \max\{\varphi((y * x) * z), \varphi(x * z)\} \leq t$. Hence $y * z \in C(\varphi; t)$, which is a contradiction.

Conversely, suppose that for any $x, y, z \in X$, $x * z \in C(\varphi; t), y * z \notin C(\varphi; t)$ imply $(y * x) * z \notin C(\varphi; t)$. Since (X, φ) is an \mathcal{N} -subalgebra of X, we have $\varphi(0) \leq \varphi(x)$ for any $x \in X$ by Lemma 3.4. Hence $0 \in C(\varphi; t)$. For every $x * z \in C(\varphi; t)$, let $(y * x) * z \in C(\varphi; t)$. If $y * z \notin C(\varphi; t)$, then $(y * x) * z \notin C(\varphi; t)$ by hypothesis. This is a contradiction. Hence $y * z \in C(\varphi; t)$ and so $C(\varphi; t)$ is a positive implicative ideal of X. By Theorem 3.15, (X, φ) is a positive implicative \mathcal{N} -ideal of X.

Theorem 3.29. Let X be a d^* -algebra. Then a \mathcal{N} -subalgebra (X, φ) of X is an \mathcal{N} -ideal of X if and only if for any $x, y \in X, x \in C(\varphi; t), y \notin C(\varphi; t)$ imply $y * x \notin C(\varphi; t)$.

Proof. Straightforward.

For any a, b in a d^* -algebra X, the set

$$A(a,b) := \{ x \in X | (x * a) * b = 0 \} \text{ for any } a, b \in X.$$

Clearly, $0, a, b \in A(a, b)$ for all $a, b \in X$. Note A(a, b) is not an ideal of X in general as seen the following example.

Example 3.30. Let $X := \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0	1	2	3
0	0	0	0	0
1	$\frac{1}{2}$	0	0	0
$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	2	2	0	1
3	3	3	3	0

Then (X; *, 0) is a d^* -algebra which is not a BCK/BCI-algebra. Also $A(0, 3) = \{0, 1, 3\}$ is not an ideal of X, since $2 * 3 = 1 \in A(0, 3)$ and $2 \notin A(0, 3)$.

For every $a, b \in X$, let (X, φ_a^b) be an \mathcal{N} -structure in which (X, φ_a^b) is given by

$$\varphi_a^b(x) = \begin{cases} \alpha & \text{if } x \in A(a,b) \\ \beta & \text{otherwise} \end{cases}$$

for all $x \in X$ and $\alpha, \beta \in [-1, 0]$ with $\alpha < \beta$.

The following example shows that there exist $a, b \in X$ such that φ_a^b is not an \mathcal{N} -ideal of X.

1498

Example 3.31. Let $X := \{0, 1, 2, 3\}$ be a d^* -algebra as in Example 3.30. Then (X, φ_0^3) is not an \mathcal{N} -ideal of X since $\varphi_0^3(2) = \beta > \alpha = \max\{\varphi_0^3(2*3) = \varphi_0^3(1), \varphi_0^3(3)\}.$

We provide a condition for an \mathcal{N} -structure (X, φ_a^b) to be an \mathcal{N} -ideal of X.

Theorem 3.32. If X is a positive implicative d^* -algebra, then (X, φ_a^b) is an \mathcal{N} -ideal of X for all $a, b \in X$.

Proof. Let $a, b \in X$. For every $x \in X$, if $x \notin A(a, b)$, then $\varphi_a^b(x) = \beta \ge \varphi_a^b(0) = \alpha$. If $x \in A(a, b)$, then $\varphi_a^b(x) = \alpha$. Since (0*a)*b = 0*b = 0, we have $0 \in A(a, b)$. Hence $\varphi_a^b(0) = \alpha = \varphi_a^b(x)$ for all $x \in X$. Now let $x, y \in X$. If $y \notin A(a, b)$, then $\varphi_a^b(y) = \beta$. Thus

$$\varphi_a^b(x) \le \max\{\varphi_a^b(x*y), \varphi_a^b(y)\} = \beta.$$

If $x, y \in A(a, b)$, then $\varphi_a^b(x) = \varphi_a^b(y) = \alpha$. Hence $\varphi_a^b(x) \le \max\{\varphi_a^b(x * y), \varphi_a^b(y)\}$. If $x \notin A(a, b)$ and $y \in A(a, b)$, then $\varphi_a^b(x) = \beta$ and $\varphi_a^b(y) = \alpha$ and hence $(x * a) * b \ne 0$ and (y * a) * b = 0. Therefore we have

((x

Hence $x * y \notin A(a, b)$, i.e., $\varphi_a^b(x * y) = \beta$. Therefore $\varphi_a^b(x) = \beta = \max\{\varphi_a^b(x * y), \varphi_a^b(y)\}$. Thus (X, φ_a^b) is an \mathcal{N} -ideal of X for all $a, b \in X$. \Box

Acknowledgement

The authors are deeply grateful to the referee for some valuable suggestions.

References

- S. S. Ahn and K. S. So, On kernels and annihilators of left-regular mappings in d-algebras, Honam Math. J. 30(2008), 645-658.
- P. J. Allen, H. S. Kim and J. Neggers, L-up and mirror algebras, Sci. Math. Japo., 59(2004), 605-612.
- P. J. Allen, H. S. Kim and J. Neggers, On companion d-algebras, Math. Slovaca, 57(2007), 93-106.
- W. H. Cornish, A multiplier approach to implicative BCK-algebras, Math. Seminar Notes, 8(1980), 157-159.
- 5. Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), 313-320.
- 6. Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon., **30**(1985), 659-661.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1-26.
- 8. K. Iséki. On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
- Y. B. Jun, J. Neggers and H. S. Kim, Fuzzy d-ideals of d-algebras, J. Fuzzy Math., 8(1999), 123-130.
- Y. C. Lee and H. S. Kim, On d-subalgebras of d-transitive d*-algebras, Math. Slovaca, 49(1999), 27-33.
- J. Neggers, A. Dvurecenskij and H. S. Kim, On d-fuzzy functions in d-algebras, Found. of Physics, 30(2000), 889-894.

 J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca, 49(1999), 243-251.

13. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca, 49(1999), 19-26.

Sun Shin Ahn is working as a professor in Department of Mathematics Education and is interested in *d*-algebras.

Department of Mathematics Education, Dongguk University, Seoul, 100-715, Korea. e-mail: sunshine@dongguk.edu

Gyeong Ho Han is working as a teacher in Hakik Girl's High School and is interested in d-algebras.

Department of Mathematics Education, Dongguk University, Seoul, 100-715, Korea. e-mail: pranchiscol@naver.com